메뉴 건너뛰기




Volumn 33, Issue 14, 2017, Pages i359-i368

Systematic identification of feature combinations for predicting drug response with Bayesian multi-view multi-task linear regression

Author keywords

[No Author keywords available]

Indexed keywords

ANTINEOPLASTIC AGENT;

EID: 85024504091     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx266     Document Type: Conference Paper
Times cited : (64)

References (41)
  • 1
    • 84906539673 scopus 로고    scopus 로고
    • Integrative and personalized QSAR analysis in cancer by Kernelized Bayesian matrix factorization
    • Ammad-Ud Din, M. et al. (2014) Integrative and personalized QSAR analysis in cancer by Kernelized Bayesian matrix factorization. J. Chem. Inf. Model, 54, 2347-2359.
    • (2014) J. Chem. Inf. Model , vol.54 , pp. 2347-2359
    • Ammad-Ud Din, M.1
  • 2
    • 84990892368 scopus 로고    scopus 로고
    • Drug response prediction by inferring pathway-response associations with Kernelized Bayesian matrix factorization
    • Ammad-Ud Din, M. et al. (2016) Drug response prediction by inferring pathway-response associations with Kernelized Bayesian matrix factorization. Bioinformatics, 32, i455-i463.
    • (2016) Bioinformatics , vol.32 , pp. i455-i463
    • Ammad-Ud Din, M.1
  • 3
    • 84859169877 scopus 로고    scopus 로고
    • The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity
    • Barretina, J. et al. (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483, 603-607.
    • (2012) Nature , vol.483 , pp. 603-607
    • Barretina, J.1
  • 4
    • 84883319024 scopus 로고    scopus 로고
    • An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules
    • Basu, A. et al. (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell, 154, 1151-1161.
    • (2013) Cell , vol.154 , pp. 1151-1161
    • Basu, A.1
  • 5
    • 85009889748 scopus 로고    scopus 로고
    • Stan: A probabilistic programming language
    • Carpenter, B. et al. (2017) Stan: A probabilistic programming language. J. Stat. Software, 76, 1-32.
    • (2017) J. Stat. Software , vol.76 , pp. 1-32
    • Carpenter, B.1
  • 6
    • 77952811536 scopus 로고    scopus 로고
    • The horseshoe estimator for sparse signals
    • Carvalho, C.M. et al. (2010) The horseshoe estimator for sparse signals. Biometrika, 97, 465-480.
    • (2010) Biometrika , vol.97 , pp. 465-480
    • Carvalho, C.M.1
  • 7
    • 84942921285 scopus 로고    scopus 로고
    • Context sensitive modeling of cancer drug sensitivity
    • Chen, B.J. et al. (2015) Context sensitive modeling of cancer drug sensitivity. PloS One, 10, e0133850.
    • (2015) PloS One , vol.10 , pp. e0133850
    • Chen, B.J.1
  • 8
    • 74049093630 scopus 로고    scopus 로고
    • Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    • Chun, H. and Keleş, S. (2010) Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R Stat. Soc. Ser. B (Statistical Methodology), 72, 3-25.
    • (2010) J. R Stat. Soc. Ser. B (Statistical Methodology) , vol.72 , pp. 3-25
    • Chun, H.1    Keleş, S.2
  • 9
    • 84948578044 scopus 로고    scopus 로고
    • Identification of drug candidates and repurposing opportunities through compound-target interaction networks
    • Cichonska, A. et al. (2015) Identification of drug candidates and repurposing opportunities through compound-target interaction networks. Expert Opin. Drug Discov., 10, 1-13.
    • (2015) Expert Opin. Drug Discov. , vol.10 , pp. 1-13
    • Cichonska, A.1
  • 10
    • 84990886997 scopus 로고    scopus 로고
    • Improved large-scale prediction of growth inhibition patterns using the NCI60 panel
    • Cortés-Ciriano, I. et al. (2015) Improved large-scale prediction of growth inhibition patterns using the NCI60 panel. Bioinformatics, 31, btv529.
    • (2015) Bioinformatics , vol.31 , pp. btv529
    • Cortés-Ciriano, I.1
  • 11
    • 84906549588 scopus 로고    scopus 로고
    • A community effort to assess and improve drug sensitivity prediction algorithms
    • Costello, J.C. et al. (2014) A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol., 32, 1202-1212.
    • (2014) Nat. Biotechnol. , vol.32 , pp. 1202-1212
    • Costello, J.C.1
  • 12
    • 84999666474 scopus 로고    scopus 로고
    • Algorithms for drug sensitivity prediction
    • De Niz, C. et al. (2016) Algorithms for drug sensitivity prediction. Algorithms, 9, 77.
    • (2016) Algorithms , vol.9 , pp. 77
    • De Niz, C.1
  • 13
    • 84934276279 scopus 로고    scopus 로고
    • Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection
    • Dong, Z. et al. (2015) Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection. BMC Cancer, 15, 489.
    • (2015) BMC Cancer , vol.15 , pp. 489
    • Dong, Z.1
  • 14
    • 84956699845 scopus 로고    scopus 로고
    • The kinome'at large'in cancer
    • Fleuren, E.D. et al. (2016) The kinome'at large'in cancer. Nat. Rev. Cancer, 16, 83-98.
    • (2016) Nat. Rev. Cancer , vol.16 , pp. 83-98
    • Fleuren, E.D.1
  • 15
    • 77950537175 scopus 로고    scopus 로고
    • Regularization paths for generalized linear models via coordinate descent
    • Friedman, J. et al. (2010) Regularization paths for generalized linear models via coordinate descent. J. Stat. Software, 33, 1.
    • (2010) J. Stat. Software , vol.33 , pp. 1
    • Friedman, J.1
  • 16
    • 84859187259 scopus 로고    scopus 로고
    • Systematic identification of genomic markers of drug sensitivity in cancer cells
    • Garnett, M.J. et al. (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 483, 570-575.
    • (2012) Nature , vol.483 , pp. 570-575
    • Garnett, M.J.1
  • 17
    • 84969256252 scopus 로고    scopus 로고
    • Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells
    • Gautam, P. et al. (2016) Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells. Mol. Cancer, 15, 1.
    • (2016) Mol. Cancer , vol.15 , pp. 1
    • Gautam, P.1
  • 18
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper)
    • Gelman, A. et al. (2006) Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper). Bayesian Anal., 1, 515-534.
    • (2006) Bayesian Anal. , vol.1 , pp. 515-534
    • Gelman, A.1
  • 19
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman, A. et al. (2008) A weakly informative default prior distribution for logistic and other regression models. Ann. Appl. Stat., 2, 1360-1383.
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 1360-1383
    • Gelman, A.1
  • 20
    • 84992187637 scopus 로고    scopus 로고
    • Complex heatmaps reveal patterns and correlations in multidimensional genomic data
    • Gu, Z. et al. (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 32, 2847-2849.
    • (2016) Bioinformatics , vol.32 , pp. 2847-2849
    • Gu, Z.1
  • 22
    • 84979649916 scopus 로고    scopus 로고
    • A landscape of pharmacogenomic interactions in cancer
    • Iorio, F. et al. (2016) A landscape of pharmacogenomic interactions in cancer. Cell, 166, 740-754.
    • (2016) Cell , vol.166 , pp. 740-754
    • Iorio, F.1
  • 23
    • 57449111248 scopus 로고    scopus 로고
    • Random survival forests
    • Ishwaran, H. et al. (2008) Random survival forests. Ann. Appl. Stat., 2, 841-860.
    • (2008) Ann. Appl. Stat. , vol.2 , pp. 841-860
    • Ishwaran, H.1
  • 24
    • 84905489545 scopus 로고    scopus 로고
    • Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data
    • Kohala Coast, Hawaii, USA
    • Jang, I.S. et al. (2014) Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. In: Proceedings of the Pacific Symposium. pp. 63-74. Kohala Coast, Hawaii, USA.
    • (2014) Proceedings of the Pacific Symposium. , pp. 63-74
    • Jang, I.S.1
  • 26
    • 84973603517 scopus 로고    scopus 로고
    • Bayesian multi-tensor factorization
    • Khan, S.A. et al. (2016) Bayesian multi-tensor factorization. Machine Learn., 105, 233-253.
    • (2016) Machine Learn. , vol.105 , pp. 233-253
    • Khan, S.A.1
  • 27
    • 2442675495 scopus 로고    scopus 로고
    • Blocking of fgfr signaling inhibits breast cancer cell proliferation through downregulation of d-type cyclins
    • Koziczak, M. et al. (2004) Blocking of fgfr signaling inhibits breast cancer cell proliferation through downregulation of d-type cyclins. Oncogene, 23, 3501-3508.
    • (2004) Oncogene , vol.23 , pp. 3501-3508
    • Koziczak, M.1
  • 28
    • 84876958088 scopus 로고    scopus 로고
    • Machine learning prediction of cancer cell sensitivity to drugs basedongenomic and chemical properties
    • Menden, M.P. et al. (2013) Machine learning prediction of cancer cell sensitivity to drugs basedongenomic and chemical properties. PLoS One, 8, e61318.
    • (2013) PLoS One , vol.8 , pp. e61318
    • Menden, M.P.1
  • 29
    • 84904123856 scopus 로고    scopus 로고
    • Random forests to predict rectal toxicity following prostate cancer radiation therapy
    • Ospina, J.D. et al. (2014) Random forests to predict rectal toxicity following prostate cancer radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 89, 1024-1031.
    • (2014) Int. J. Radiat. Oncol. Biol. Phys. , vol.89 , pp. 1024-1031
    • Ospina, J.D.1
  • 30
    • 78651445374 scopus 로고    scopus 로고
    • Predicting in vitro drug sensitivity using random forests
    • Riddick, G. et al. (2011) Predicting in vitro drug sensitivity using random forests. Bioinformatics, 27, 220-224.
    • (2011) Bioinformatics , vol.27 , pp. 220-224
    • Riddick, G.1
  • 31
    • 84882287077 scopus 로고    scopus 로고
    • A sparse-group lasso
    • Simon, N. et al. (2013) A sparse-group lasso. J. Comput. Graph. Stat., 22, 231-245.
    • (2013) J. Comput. Graph. Stat. , vol.22 , pp. 231-245
    • Simon, N.1
  • 32
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R Stat. Soc. Ser. B Methodol., 58, 267-288.
    • (1996) J. R Stat. Soc. Ser. B Methodol. , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 33
    • 79959689358 scopus 로고    scopus 로고
    • Multioutput support vector regression for remote sensing biophysical parameter estimation
    • Tuia, D. et al. (2011) Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci. Remote Sensing Lett., 8, 804-808.
    • (2011) IEEE Geosci. Remote Sensing Lett. , vol.8 , pp. 804-808
    • Tuia, D.1
  • 34
    • 75149170979 scopus 로고    scopus 로고
    • Fibroblast growth factor signalling: From development to cancer
    • Turner, N. and Grose, R. (2010) Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer, 10, 116-129.
    • (2010) Nat. Rev. Cancer , vol.10 , pp. 116-129
    • Turner, N.1    Grose, R.2
  • 35
    • 77954269901 scopus 로고    scopus 로고
    • The genemania prediction server: Biological network integration for gene prioritization and predicting gene function
    • Warde-Farley, D. et al. (2010) The genemania prediction server: biological network integration for gene prioritization and predicting gene function. Nucl. Acids Res., 38 (2), W214-W220.
    • (2010) Nucl. Acids Res. , vol.38 , Issue.2 , pp. W214-W220
    • Warde-Farley, D.1
  • 36
    • 79955675804 scopus 로고    scopus 로고
    • Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines through de-repression of fgfr2 and fgfr3 expression
    • Ware, K.E. et al. (2010) Rapidly acquired resistance to egfr tyrosine kinase inhibitors in nsclc cell lines through de-repression of fgfr2 and fgfr3 expression. PloS One, 5, e14117.
    • (2010) PloS One , vol.5 , pp. e14117
    • Ware, K.E.1
  • 37
    • 84902095891 scopus 로고    scopus 로고
    • Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies
    • Yadav, B. et al. (2014) Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci. Rep., 4, 5193.
    • (2014) Sci. Rep. , vol.4 , pp. 5193
    • Yadav, B.1
  • 38
    • 84876563391 scopus 로고    scopus 로고
    • Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells
    • Yang, W. et al. (2013) Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucl. Acids Res., 41, D955-D961.
    • (2013) Nucl. Acids Res. , vol.41 , pp. D955-D961
    • Yang, W.1
  • 39
    • 33847394119 scopus 로고    scopus 로고
    • Pdgfrs are critical for pi3k/akt activation and negatively regulated by mtor
    • Zhang, H. et al. (2007) Pdgfrs are critical for pi3k/akt activation and negatively regulated by mtor. J. Clin. Invest., 117, 730-738.
    • (2007) J. Clin. Invest. , vol.117 , pp. 730-738
    • Zhang, H.1
  • 40
    • 84943545682 scopus 로고    scopus 로고
    • Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model
    • Zhang, N. et al. (2015) Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model. PLoS Comput. Biol., 11, e1004498.
    • (2015) PLoS Comput. Biol. , vol.11 , pp. e1004498
    • Zhang, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.