-
1
-
-
84906539673
-
Integrative and personalized QSAR analysis in cancer by Kernelized Bayesian matrix factorization
-
Ammad-Ud Din, M. et al. (2014) Integrative and personalized QSAR analysis in cancer by Kernelized Bayesian matrix factorization. J. Chem. Inf. Model, 54, 2347-2359.
-
(2014)
J. Chem. Inf. Model
, vol.54
, pp. 2347-2359
-
-
Ammad-Ud Din, M.1
-
2
-
-
84990892368
-
Drug response prediction by inferring pathway-response associations with Kernelized Bayesian matrix factorization
-
Ammad-Ud Din, M. et al. (2016) Drug response prediction by inferring pathway-response associations with Kernelized Bayesian matrix factorization. Bioinformatics, 32, i455-i463.
-
(2016)
Bioinformatics
, vol.32
, pp. i455-i463
-
-
Ammad-Ud Din, M.1
-
3
-
-
84859169877
-
The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity
-
Barretina, J. et al. (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature, 483, 603-607.
-
(2012)
Nature
, vol.483
, pp. 603-607
-
-
Barretina, J.1
-
4
-
-
84883319024
-
An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules
-
Basu, A. et al. (2013) An interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell, 154, 1151-1161.
-
(2013)
Cell
, vol.154
, pp. 1151-1161
-
-
Basu, A.1
-
5
-
-
85009889748
-
Stan: A probabilistic programming language
-
Carpenter, B. et al. (2017) Stan: A probabilistic programming language. J. Stat. Software, 76, 1-32.
-
(2017)
J. Stat. Software
, vol.76
, pp. 1-32
-
-
Carpenter, B.1
-
6
-
-
77952811536
-
The horseshoe estimator for sparse signals
-
Carvalho, C.M. et al. (2010) The horseshoe estimator for sparse signals. Biometrika, 97, 465-480.
-
(2010)
Biometrika
, vol.97
, pp. 465-480
-
-
Carvalho, C.M.1
-
7
-
-
84942921285
-
Context sensitive modeling of cancer drug sensitivity
-
Chen, B.J. et al. (2015) Context sensitive modeling of cancer drug sensitivity. PloS One, 10, e0133850.
-
(2015)
PloS One
, vol.10
, pp. e0133850
-
-
Chen, B.J.1
-
8
-
-
74049093630
-
Sparse partial least squares regression for simultaneous dimension reduction and variable selection
-
Chun, H. and Keleş, S. (2010) Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J. R Stat. Soc. Ser. B (Statistical Methodology), 72, 3-25.
-
(2010)
J. R Stat. Soc. Ser. B (Statistical Methodology)
, vol.72
, pp. 3-25
-
-
Chun, H.1
Keleş, S.2
-
9
-
-
84948578044
-
Identification of drug candidates and repurposing opportunities through compound-target interaction networks
-
Cichonska, A. et al. (2015) Identification of drug candidates and repurposing opportunities through compound-target interaction networks. Expert Opin. Drug Discov., 10, 1-13.
-
(2015)
Expert Opin. Drug Discov.
, vol.10
, pp. 1-13
-
-
Cichonska, A.1
-
10
-
-
84990886997
-
Improved large-scale prediction of growth inhibition patterns using the NCI60 panel
-
Cortés-Ciriano, I. et al. (2015) Improved large-scale prediction of growth inhibition patterns using the NCI60 panel. Bioinformatics, 31, btv529.
-
(2015)
Bioinformatics
, vol.31
, pp. btv529
-
-
Cortés-Ciriano, I.1
-
11
-
-
84906549588
-
A community effort to assess and improve drug sensitivity prediction algorithms
-
Costello, J.C. et al. (2014) A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol., 32, 1202-1212.
-
(2014)
Nat. Biotechnol.
, vol.32
, pp. 1202-1212
-
-
Costello, J.C.1
-
12
-
-
84999666474
-
Algorithms for drug sensitivity prediction
-
De Niz, C. et al. (2016) Algorithms for drug sensitivity prediction. Algorithms, 9, 77.
-
(2016)
Algorithms
, vol.9
, pp. 77
-
-
De Niz, C.1
-
13
-
-
84934276279
-
Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection
-
Dong, Z. et al. (2015) Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection. BMC Cancer, 15, 489.
-
(2015)
BMC Cancer
, vol.15
, pp. 489
-
-
Dong, Z.1
-
14
-
-
84956699845
-
The kinome'at large'in cancer
-
Fleuren, E.D. et al. (2016) The kinome'at large'in cancer. Nat. Rev. Cancer, 16, 83-98.
-
(2016)
Nat. Rev. Cancer
, vol.16
, pp. 83-98
-
-
Fleuren, E.D.1
-
15
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
Friedman, J. et al. (2010) Regularization paths for generalized linear models via coordinate descent. J. Stat. Software, 33, 1.
-
(2010)
J. Stat. Software
, vol.33
, pp. 1
-
-
Friedman, J.1
-
16
-
-
84859187259
-
Systematic identification of genomic markers of drug sensitivity in cancer cells
-
Garnett, M.J. et al. (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature, 483, 570-575.
-
(2012)
Nature
, vol.483
, pp. 570-575
-
-
Garnett, M.J.1
-
17
-
-
84969256252
-
Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells
-
Gautam, P. et al. (2016) Identification of selective cytotoxic and synthetic lethal drug responses in triple negative breast cancer cells. Mol. Cancer, 15, 1.
-
(2016)
Mol. Cancer
, vol.15
, pp. 1
-
-
Gautam, P.1
-
18
-
-
84867086419
-
Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper)
-
Gelman, A. et al. (2006) Prior distributions for variance parameters in hierarchical models (comment on article by browne and draper). Bayesian Anal., 1, 515-534.
-
(2006)
Bayesian Anal.
, vol.1
, pp. 515-534
-
-
Gelman, A.1
-
19
-
-
84865371361
-
A weakly informative default prior distribution for logistic and other regression models
-
Gelman, A. et al. (2008) A weakly informative default prior distribution for logistic and other regression models. Ann. Appl. Stat., 2, 1360-1383.
-
(2008)
Ann. Appl. Stat.
, vol.2
, pp. 1360-1383
-
-
Gelman, A.1
-
20
-
-
84992187637
-
Complex heatmaps reveal patterns and correlations in multidimensional genomic data
-
Gu, Z. et al. (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics, 32, 2847-2849.
-
(2016)
Bioinformatics
, vol.32
, pp. 2847-2849
-
-
Gu, Z.1
-
22
-
-
84979649916
-
A landscape of pharmacogenomic interactions in cancer
-
Iorio, F. et al. (2016) A landscape of pharmacogenomic interactions in cancer. Cell, 166, 740-754.
-
(2016)
Cell
, vol.166
, pp. 740-754
-
-
Iorio, F.1
-
23
-
-
57449111248
-
Random survival forests
-
Ishwaran, H. et al. (2008) Random survival forests. Ann. Appl. Stat., 2, 841-860.
-
(2008)
Ann. Appl. Stat.
, vol.2
, pp. 841-860
-
-
Ishwaran, H.1
-
24
-
-
84905489545
-
Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data
-
Kohala Coast, Hawaii, USA
-
Jang, I.S. et al. (2014) Systematic assessment of analytical methods for drug sensitivity prediction from cancer cell line data. In: Proceedings of the Pacific Symposium. pp. 63-74. Kohala Coast, Hawaii, USA.
-
(2014)
Proceedings of the Pacific Symposium.
, pp. 63-74
-
-
Jang, I.S.1
-
26
-
-
84973603517
-
Bayesian multi-tensor factorization
-
Khan, S.A. et al. (2016) Bayesian multi-tensor factorization. Machine Learn., 105, 233-253.
-
(2016)
Machine Learn.
, vol.105
, pp. 233-253
-
-
Khan, S.A.1
-
27
-
-
2442675495
-
Blocking of fgfr signaling inhibits breast cancer cell proliferation through downregulation of d-type cyclins
-
Koziczak, M. et al. (2004) Blocking of fgfr signaling inhibits breast cancer cell proliferation through downregulation of d-type cyclins. Oncogene, 23, 3501-3508.
-
(2004)
Oncogene
, vol.23
, pp. 3501-3508
-
-
Koziczak, M.1
-
28
-
-
84876958088
-
Machine learning prediction of cancer cell sensitivity to drugs basedongenomic and chemical properties
-
Menden, M.P. et al. (2013) Machine learning prediction of cancer cell sensitivity to drugs basedongenomic and chemical properties. PLoS One, 8, e61318.
-
(2013)
PLoS One
, vol.8
, pp. e61318
-
-
Menden, M.P.1
-
29
-
-
84904123856
-
Random forests to predict rectal toxicity following prostate cancer radiation therapy
-
Ospina, J.D. et al. (2014) Random forests to predict rectal toxicity following prostate cancer radiation therapy. Int. J. Radiat. Oncol. Biol. Phys., 89, 1024-1031.
-
(2014)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.89
, pp. 1024-1031
-
-
Ospina, J.D.1
-
30
-
-
78651445374
-
Predicting in vitro drug sensitivity using random forests
-
Riddick, G. et al. (2011) Predicting in vitro drug sensitivity using random forests. Bioinformatics, 27, 220-224.
-
(2011)
Bioinformatics
, vol.27
, pp. 220-224
-
-
Riddick, G.1
-
31
-
-
84882287077
-
A sparse-group lasso
-
Simon, N. et al. (2013) A sparse-group lasso. J. Comput. Graph. Stat., 22, 231-245.
-
(2013)
J. Comput. Graph. Stat.
, vol.22
, pp. 231-245
-
-
Simon, N.1
-
32
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. J. R Stat. Soc. Ser. B Methodol., 58, 267-288.
-
(1996)
J. R Stat. Soc. Ser. B Methodol.
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
33
-
-
79959689358
-
Multioutput support vector regression for remote sensing biophysical parameter estimation
-
Tuia, D. et al. (2011) Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci. Remote Sensing Lett., 8, 804-808.
-
(2011)
IEEE Geosci. Remote Sensing Lett.
, vol.8
, pp. 804-808
-
-
Tuia, D.1
-
34
-
-
75149170979
-
Fibroblast growth factor signalling: From development to cancer
-
Turner, N. and Grose, R. (2010) Fibroblast growth factor signalling: from development to cancer. Nat. Rev. Cancer, 10, 116-129.
-
(2010)
Nat. Rev. Cancer
, vol.10
, pp. 116-129
-
-
Turner, N.1
Grose, R.2
-
35
-
-
77954269901
-
The genemania prediction server: Biological network integration for gene prioritization and predicting gene function
-
Warde-Farley, D. et al. (2010) The genemania prediction server: biological network integration for gene prioritization and predicting gene function. Nucl. Acids Res., 38 (2), W214-W220.
-
(2010)
Nucl. Acids Res.
, vol.38
, Issue.2
, pp. W214-W220
-
-
Warde-Farley, D.1
-
36
-
-
79955675804
-
Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines through de-repression of fgfr2 and fgfr3 expression
-
Ware, K.E. et al. (2010) Rapidly acquired resistance to egfr tyrosine kinase inhibitors in nsclc cell lines through de-repression of fgfr2 and fgfr3 expression. PloS One, 5, e14117.
-
(2010)
PloS One
, vol.5
, pp. e14117
-
-
Ware, K.E.1
-
37
-
-
84902095891
-
Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies
-
Yadav, B. et al. (2014) Quantitative scoring of differential drug sensitivity for individually optimized anticancer therapies. Sci. Rep., 4, 5193.
-
(2014)
Sci. Rep.
, vol.4
, pp. 5193
-
-
Yadav, B.1
-
38
-
-
84876563391
-
Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells
-
Yang, W. et al. (2013) Genomics of drug sensitivity in cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucl. Acids Res., 41, D955-D961.
-
(2013)
Nucl. Acids Res.
, vol.41
, pp. D955-D961
-
-
Yang, W.1
-
39
-
-
33847394119
-
Pdgfrs are critical for pi3k/akt activation and negatively regulated by mtor
-
Zhang, H. et al. (2007) Pdgfrs are critical for pi3k/akt activation and negatively regulated by mtor. J. Clin. Invest., 117, 730-738.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 730-738
-
-
Zhang, H.1
-
40
-
-
84943545682
-
Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model
-
Zhang, N. et al. (2015) Predicting anticancer drug responses using a dual-layer integrated cell line-drug network model. PLoS Comput. Biol., 11, e1004498.
-
(2015)
PLoS Comput. Biol.
, vol.11
, pp. e1004498
-
-
Zhang, N.1
|