-
1
-
-
33745561205
-
An introduction to variable and feature selection
-
I. Guyon, and A. Elisseeff An introduction to variable and feature selection J Mach Learn Res 3 2003 1157 1182
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1157-1182
-
-
Guyon, I.1
Elisseeff, A.2
-
2
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barhill, and V. Vapnik Gene selection for cancer classification using support vector machines Mach Learn 46 2002 389 422
-
(2002)
Mach Learn
, vol.46
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barhill, S.3
Vapnik, V.4
-
3
-
-
17644384367
-
Minimum redundancy feature selection from microarray gene expression data
-
C. Ding, and H. Peng Minimum redundancy feature selection from microarray gene expression data J Bioinform Comput Biol 3 2005 185 205
-
(2005)
J Bioinform Comput Biol
, vol.3
, pp. 185-205
-
-
Ding, C.1
Peng, H.2
-
4
-
-
37549011765
-
Improved binary PSO for feature selection using gene expression data
-
L.-Y. Chuang, H.-W. Chang, C.-J. Tu, and C.-H. Yang Improved binary PSO for feature selection using gene expression data Comput Biol Chem 32 2008 29 38
-
(2008)
Comput Biol Chem
, vol.32
, pp. 29-38
-
-
Chuang, L.-Y.1
Chang, H.-W.2
Tu, C.-J.3
Yang, C.-H.4
-
5
-
-
84861510685
-
A survey on filter techniques for feature selection in gene expression microarray analysis
-
C. Lazar, J. Taminau, S. Meganck, D. Steenhoff, A. Coletta, and C. Molter et al. A survey on filter techniques for feature selection in gene expression microarray analysis IEEE/ACM Trans Comput Biol Bioinform 9 2012
-
(2012)
IEEE/ACM Trans Comput Biol Bioinform
, vol.9
-
-
Lazar, C.1
Taminau, J.2
Meganck, S.3
Steenhoff, D.4
Coletta, A.5
Molter, C.6
-
8
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi, and G.H. John Wrappers for feature subset selection Artif Intell 97 1997 273 324
-
(1997)
Artif Intell
, vol.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
9
-
-
85061066913
-
Selection of relevant features in machine learning
-
Langley P. Selection of relevant features in machine learning. In: AAAI fall symp relevance; 1994.
-
(1994)
AAAI Fall Symp Relevance
-
-
Langley, P.1
-
10
-
-
0031334221
-
Selection of relevant features and examples in machine learning
-
A.L. Blum, and P. Langley Selection of relevant features and examples in machine learning Artif Intell 97 1997 245 270
-
(1997)
Artif Intell
, vol.97
, pp. 245-270
-
-
Blum, A.L.1
Langley, P.2
-
12
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
R. Battiti Using mutual information for selecting features in supervised neural net learning IEEE Trans Neural Networks 5 1994
-
(1994)
IEEE Trans Neural Networks
, vol.5
-
-
Battiti, R.1
-
13
-
-
2942731012
-
An extensive empirical study of feature selection metrics for text classification
-
G. Forman An extensive empirical study of feature selection metrics for text classification J Mach Learn Res 3 2003 1289 1306
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1289-1306
-
-
Forman, G.1
-
14
-
-
0036127473
-
Input feature selection for classification problems
-
N. Kwak, and C.-H. Choi Input feature selection for classification problems IEEE Trans Neural Networks 13 2002 143 159
-
(2002)
IEEE Trans Neural Networks
, vol.13
, pp. 143-159
-
-
Kwak, N.1
Choi, C.-H.2
-
15
-
-
0028416938
-
Independent component analysis a new concept?
-
P. Comon Independent component analysis a new concept? Signal Process 36 1994 287 314
-
(1994)
Signal Process
, vol.36
, pp. 287-314
-
-
Comon, P.1
-
16
-
-
1942450610
-
On feature extraction by non-parametric mutual information maximization
-
K. Torkkola On feature extraction by non-parametric mutual information maximization J Mach Learn Res 3 2003 1415 1438
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1415-1438
-
-
Torkkola, K.1
-
17
-
-
33645690579
-
Fast binary feature selection with conditional mutual information
-
F. Fleuret Fast binary feature selection with conditional mutual information Mach Learn Res 5 2004 1531 1555
-
(2004)
Mach Learn Res
, vol.5
, pp. 1531-1555
-
-
Fleuret, F.1
-
19
-
-
2942734703
-
Benefitting from the variables that variable selection discards
-
R. Caruana, and V. de S Benefitting from the variables that variable selection discards J Mach Learn Res 3 2003 1245 1264
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1245-1264
-
-
Caruana, R.1
De S, V.2
-
20
-
-
0000012317
-
Towards optimal feature selection
-
Koller D, Sahami M. Towards optimal feature selection. In: ICML, vol. 96; 1996. p. 284-92.
-
(1996)
ICML
, vol.96
, pp. 284-292
-
-
Koller, D.1
Sahami, M.2
-
23
-
-
84856505051
-
Feature selection based on class-dependent densities for high-dimensional binary data
-
K. Javed, H.A. Babri, and M. Saeed Feature selection based on class-dependent densities for high-dimensional binary data IEEE Trans Knowl Data Eng 24 2010
-
(2010)
IEEE Trans Knowl Data Eng
, vol.24
-
-
Javed, K.1
Babri, H.A.2
Saeed, M.3
-
24
-
-
24344458137
-
Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, and C. Ding Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy IEEE Trans Pattern Anal Mach Intell 27 2005
-
(2005)
IEEE Trans Pattern Anal Mach Intell
, vol.27
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
26
-
-
84857553754
-
A comparison of feature selection procedures for classifier based on kernel density estimation
-
E. Acuna, F. Coaquira, and M. Gonzalez A comparison of feature selection procedures for classifier based on kernel density estimation Proc Comput Commun Control Technol 1 2003 468 472
-
(2003)
Proc Comput Commun Control Technol
, vol.1
, pp. 468-472
-
-
Acuna, E.1
Coaquira, F.2
Gonzalez, M.3
-
27
-
-
2942701493
-
Ranking a random feature for variable and feature selection
-
H. Stoppiglia, G. Dreyfus, R. Dubios, and Y. Oussar Ranking a random feature for variable and feature selection J Mach Res 3 2003 1399 1414
-
(2003)
J Mach Res
, vol.3
, pp. 1399-1414
-
-
Stoppiglia, H.1
Dreyfus, G.2
Dubios, R.3
Oussar, Y.4
-
29
-
-
77954565155
-
Discriminative semi-supervised feature selection via manifold regularization
-
Z. Xu, I. King, M.R.-T. Lyu, and R. Jin Discriminative semi-supervised feature selection via manifold regularization IEEE Trans Neural Networks 21 2010
-
(2010)
IEEE Trans Neural Networks
, vol.21
-
-
Xu, Z.1
King, I.2
Lyu, M.R.-T.3
Jin, R.4
-
30
-
-
0017535866
-
A branch and bound algorithm for feature subset selection
-
P. Narendra, and K. Fukunaga A branch and bound algorithm for feature subset selection IEEE Trans Comput 6 1977 917 922
-
(1977)
IEEE Trans Comput
, vol.6
, pp. 917-922
-
-
Narendra, P.1
Fukunaga, K.2
-
34
-
-
84890445089
-
Overfitting in making comparisons between variable selection methods
-
J. Reunanen Overfitting in making comparisons between variable selection methods J Mach Learn Res 3 2003 1371 1382
-
(2003)
J Mach Learn Res
, vol.3
, pp. 1371-1382
-
-
Reunanen, J.1
-
36
-
-
84894904864
-
A comparison of feature selection methods for the detection of breast cancers in mammograms: Adaptive sequential floating search vs genetic algorithm
-
Sun Y, Babbs C, Delp E. A comparison of feature selection methods for the detection of breast cancers in mammograms: adaptive sequential floating search vs. genetic algorithm. Conf proc IEEE eng med biol soc, vol. 6.
-
Conf Proc IEEE Eng Med Biol Soc
, vol.6
-
-
Sun, Y.1
Babbs, C.2
Delp, E.3
-
37
-
-
67349133167
-
An improvement on floating search algorithms for feature subset selection
-
S. Nakariyakul, and D.P. Casasent An improvement on floating search algorithms for feature subset selection Pattern Recog 42 2009 1932 1940
-
(2009)
Pattern Recog
, vol.42
, pp. 1932-1940
-
-
Nakariyakul, S.1
Casasent, D.P.2
-
39
-
-
12844283500
-
A two-stage evolutionary algorithm for variable selection in the development of rbf neural network models
-
A. Alexandridis, P. Patrinos, H. Sarimveis, and G. Tsekouras A two-stage evolutionary algorithm for variable selection in the development of rbf neural network models Chemomet Intell Lab Syst 75 2005 149 162
-
(2005)
Chemomet Intell Lab Syst
, vol.75
, pp. 149-162
-
-
Alexandridis, A.1
Patrinos, P.2
Sarimveis, H.3
Tsekouras, G.4
-
40
-
-
0001238580
-
Genetic algorithms as a tool for wavenumber selection in multivariate calibration
-
Jouan-Rimbaud D, Massart DL, Leardi R, Noord OED. Genetic algorithms as a tool for wavenumber selection in multivariate calibration. Anal Chem 67.
-
Anal Chem
, vol.67
-
-
Jouan-Rimbaud, D.1
Massart, D.L.2
Leardi, R.3
Oed, N.4
-
41
-
-
0032028297
-
Feature subset selection using a genetic algorithm
-
J. Yang, and V. Honavar Feature subset selection using a genetic algorithm IEEE Intell Syst Appl 13 1998 44 49
-
(1998)
IEEE Intell Syst Appl
, vol.13
, pp. 44-49
-
-
Yang, J.1
Honavar, V.2
-
42
-
-
0003065528
-
Further research on feature selection and classification using genetic algorithm
-
Puch W, Goodman E, Pei M, Chia-Shun L, Hovland P, Enbody R. Further research on feature selection and classification using genetic algorithm. In International conference on genetic algorithm; 1993. p. 557-64.
-
(1993)
International Conference on Genetic Algorithm
, pp. 557-564
-
-
Puch, W.1
Goodman, E.2
Pei, M.3
Chia-Shun, L.4
Hovland, P.5
Enbody, R.6
-
43
-
-
0001334115
-
The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional genetic recombination
-
G.J.E. Rawlins, Morgan Kauffman
-
L. Eshelman The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination G.J.E. Rawlins, In foundations of genetic algorithms 1991 Morgan Kauffman
-
(1991)
Foundations of Genetic Algorithms
-
-
Eshelman, L.1
-
44
-
-
33646875753
-
Feature-based image registration by means of the chc evolutionary algorithm
-
O. Cordon, S. Damas, and J. Santamaria Feature-based image registration by means of the chc evolutionary algorithm Image Vis Comput 24 2006 525 533
-
(2006)
Image Vis Comput
, vol.24
, pp. 525-533
-
-
Cordon, O.1
Damas, S.2
Santamaria, J.3
-
45
-
-
0142086622
-
A methodology for feature selection using multiobjective genetic algorithms for handwritten digit sting recognition
-
L. Oliveira, R. Sabourin, F. Bortolozzi, and C. Suen A methodology for feature selection using multiobjective genetic algorithms for handwritten digit sting recognition Int J Pattern Recog Artif Intell 17 2003 903 929
-
(2003)
Int J Pattern Recog Artif Intell
, vol.17
, pp. 903-929
-
-
Oliveira, L.1
Sabourin, R.2
Bortolozzi, F.3
Suen, C.4
-
46
-
-
85013515810
-
Comparative study of techniques for large-scale feature selection
-
F. Ferri, P. Pudil, M. Hatef, and J. Kittler Comparative study of techniques for large-scale feature selection Pattern Recog Pract 1994 403 413
-
(1994)
Pattern Recog Pract
, pp. 403-413
-
-
Ferri, F.1
Pudil, P.2
Hatef, M.3
Kittler, J.4
-
47
-
-
0033640901
-
Comparison of algorithms that select features for pattern classifiers
-
M. Kudo, and J. Sklansky Comparison of algorithms that select features for pattern classifiers Pattern Recog 33 2000 327 336
-
(2000)
Pattern Recog
, vol.33
, pp. 327-336
-
-
Kudo, M.1
Sklansky, J.2
-
49
-
-
63149139219
-
Gene selection in cancer classification using pso/svm and ga/svm hybrid algorithms
-
E. Alba, J. Garcia-Nieto, L. Jourdan, and E.-G. Talbi Gene selection in cancer classification using pso/svm and ga/svm hybrid algorithms Evol Comput 2007 284 290
-
(2007)
Evol Comput
, pp. 284-290
-
-
Alba, E.1
Garcia-Nieto, J.2
Jourdan, L.3
Talbi, E.-G.4
-
53
-
-
35348920168
-
Feature selection and classification of hyperspectral images with support vector machines
-
R. Archibald, and G. Fann Feature selection and classification of hyperspectral images with support vector machines IEEE Geosci Remote Sens Lett 4 2007
-
(2007)
IEEE Geosci Remote Sens Lett
, vol.4
-
-
Archibald, R.1
Fann, G.2
-
54
-
-
30044438683
-
Combined svm-based feature selection and classification
-
J. Neumann, C. Schnorr, and G. Steidl Combined svm-based feature selection and classification Mach Learn 61 2005 129 150
-
(2005)
Mach Learn
, vol.61
, pp. 129-150
-
-
Neumann, J.1
Schnorr, C.2
Steidl, G.3
-
56
-
-
40949143180
-
Performing feature selection with multilayer perceptrons
-
E. Romero, and J.M. Sopena Performing feature selection with multilayer perceptrons IEEE Trans Neural Networks 19 2008
-
(2008)
IEEE Trans Neural Networks
, vol.19
-
-
Romero, E.1
Sopena, J.M.2
-
57
-
-
33845302828
-
Randomized variable elimination
-
D.J. Stracuzzi, and P.E. Utgoff Randomized variable elimination J Mach Learn 5 2004 1331 1364
-
(2004)
J Mach Learn
, vol.5
, pp. 1331-1364
-
-
Stracuzzi, D.J.1
Utgoff, P.E.2
-
58
-
-
73849129973
-
Uninformation variable elimination and successive projections algorithm in mid-infrared spectra wavenumber selection
-
D. Wu, Z. Zhou, S. Feng, and Y. He Uninformation variable elimination and successive projections algorithm in mid-infrared spectra wavenumber selection Image Signal Process 2009
-
(2009)
Image Signal Process
-
-
Wu, D.1
Zhou, Z.2
Feng, S.3
He, Y.4
-
59
-
-
0000105237
-
Elimination of uninformative variables for multivariate calibration
-
V. Centner, D.-L. Massart, O.E. de Noord, S. de Jong, B.M. Vandeginste, and C. Sterna Elimination of uninformative variables for multivariate calibration Anal Chem 68 1996 3851 3858
-
(1996)
Anal Chem
, vol.68
, pp. 3851-3858
-
-
Centner, V.1
Massart, D.-L.2
De Noord, O.E.3
De Jong, S.4
Vandeginste, B.M.5
Sterna, C.6
-
60
-
-
0032540841
-
Variable selection in wavelet regression models
-
B.K. Alsberg, A.M. Woodward, M.K. Winson, J.J. Rowl, and D.B. Kell Variable selection in wavelet regression models Anal Chim Acta 368 1998 29 44
-
(1998)
Anal Chim Acta
, vol.368
, pp. 29-44
-
-
Alsberg, B.K.1
Woodward, A.M.2
Winson, M.K.3
Rowl, J.J.4
Kell, D.B.5
-
61
-
-
77957565222
-
Lazy learner text categorization algorithm based on embedded feature selection
-
Y. Peng, Z. Xuefeng, Z. Jianyong, and X. Yunhong Lazy learner text categorization algorithm based on embedded feature selection J Syst Eng Electron 20 2009 651 659
-
(2009)
J Syst Eng Electron
, vol.20
, pp. 651-659
-
-
Peng, Y.1
Xuefeng, Z.2
Jianyong, Z.3
Yunhong, X.4
-
63
-
-
0037965523
-
Feature selection based on the approximation of class densities by finite mixtures of the special type
-
P. Pudil, J. Novovicova, and J. Kittler Feature selection based on the approximation of class densities by finite mixtures of the special type Pattern Recog 28 1995 1389 1398
-
(1995)
Pattern Recog
, vol.28
, pp. 1389-1398
-
-
Pudil, P.1
Novovicova, J.2
Kittler, J.3
-
66
-
-
33745456231
-
-
Tech rep 1530, computer sciences University of Wisconsin-Madison
-
X. Zhu Semi-supervised learning literature survey Tech rep 1530, computer sciences 2005 University of Wisconsin-Madison
-
(2005)
Semi-supervised Learning Literature Survey
-
-
Zhu, X.1
-
67
-
-
70449102559
-
Semi-supervised feature selection via spectral analysis
-
Zhao Z, Liu H. Semi-supervised feature selection via spectral analysis. In: Proc 7th SIAM data mining conf (SDM); 2007. p. 641-6.
-
(2007)
Proc 7th SIAM Data Mining Conf (SDM)
, pp. 641-646
-
-
Zhao, Z.1
Liu, H.2
-
68
-
-
83755163963
-
The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures
-
A.-C. Haury, P. Gestraud, and J.-P. Vert The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures PLoS ONE 6 2011 e28210
-
(2011)
PLoS ONE
, vol.6
, pp. 28210
-
-
Haury, A.-C.1
Gestraud, P.2
Vert, J.-P.3
-
69
-
-
77949507309
-
Robust biomarker identification for cancer diagnosis with ensemble feature selection methods
-
A. T, H. T, V. de Peer Y, D. P, and S. Y Robust biomarker identification for cancer diagnosis with ensemble feature selection methods Bioinformatics 26 2010 392 398
-
(2010)
Bioinformatics
, vol.26
, pp. 392-398
-
-
Ai, T.1
Hu, T.2
De Peer, Y.V.3
Du, P.4
Si, Y.5
-
71
-
-
34248647608
-
Stability of feature selection algorithms: A study on high dimensional spaces
-
A. Kalousis, J. Prados, and M. Hilario Stability of feature selection algorithms: a study on high dimensional spaces Knowl Inform Syst 2 2007 95 116
-
(2007)
Knowl Inform Syst
, vol.2
, pp. 95-116
-
-
Kalousis, A.1
Prados, J.2
Hilario, M.3
-
72
-
-
78149286082
-
Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality
-
P. Somol, and J. Novovicova Evaluating stability and comparing output of feature selectors that optimize feature subset cardinality IEEE Trans Pattern Anal Mach Intell 32 2010 1921 1939
-
(2010)
IEEE Trans Pattern Anal Mach Intell
, vol.32
, pp. 1921-1939
-
-
Somol, P.1
Novovicova, J.2
-
73
-
-
79957606714
-
Robust feature selection for microarray data based on multicriterion fusion
-
F. Yang, and K. Mao Robust feature selection for microarray data based on multicriterion fusion IEEE/ACM Trans Comput Biol Bioinform 8 2011
-
(2011)
IEEE/ACM Trans Comput Biol Bioinform
, vol.8
-
-
Yang, F.1
Mao, K.2
-
74
-
-
0031361611
-
Machine learning research: Four current directions
-
T. Dietterich Machine learning research: four current directions Artif Intell Mag 18 1997 97 136
-
(1997)
Artif Intell Mag
, vol.18
, pp. 97-136
-
-
Dietterich, T.1
-
76
-
-
56749117943
-
In defense of one-vs-all classification
-
R. Rifkin, and A. Klautau In defense of one-vs-all classification J Mach Learn Res 5 2004 101 141
-
(2004)
J Mach Learn Res
, vol.5
, pp. 101-141
-
-
Rifkin, R.1
Klautau, A.2
-
79
-
-
59649130080
-
Criterion in selecting the clustering algorithm in radial basis functional link nets
-
A.S. Loong, O.H. Choon, and L.H. Chin Criterion in selecting the clustering algorithm in radial basis functional link nets WSEAS Trans Syst 7 2008 1290 1299
-
(2008)
WSEAS Trans Syst
, vol.7
, pp. 1290-1299
-
-
Loong, A.S.1
Choon, O.H.2
Chin, L.H.3
-
80
-
-
41149089754
-
Radial basis function classifiers to help in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry
-
J.V. Marcos, R. Hornero, and D. Alvarez Radial basis function classifiers to help in the diagnosis of the obstructive sleep apnoea syndrome from nocturnal oximetry Med Biol Eng Comput 46 2008 323 332
-
(2008)
Med Biol Eng Comput
, vol.46
, pp. 323-332
-
-
Marcos, J.V.1
Hornero, R.2
Alvarez, D.3
-
81
-
-
77950663983
-
The application of dynamic k-means clustering algorithm in the center selection of rbf neural networks
-
Hongyang L, He J. The application of dynamic k-means clustering algorithm in the center selection of rbf neural networks. In: Proc 3rd international conference on genetic and evolutionary computing, vol. 177; 2009. p. 488-91.
-
(2009)
Proc 3rd International Conference on Genetic and Evolutionary Computing
, vol.177
, pp. 488-491
-
-
Hongyang, L.1
He, J.2
-
82
-
-
84894906452
-
-
http://archive.ics.uci.edu/ml/.
-
-
-
-
83
-
-
84872406914
-
In-vivo fault prediction for rf generators using variable elimination and state-of-theart classifiers
-
October 14-17, COEX, Seoul, Korea
-
Chandrashekar G, Sahin F. In-vivo fault prediction for rf generators using variable elimination and state-of-theart classifiers. 2012 IEEE international conference on systems, man, and cybernetics October 14-17, COEX, Seoul, Korea; 2012.
-
(2012)
2012 IEEE International Conference on Systems, Man, and Cybernetics
-
-
Chandrashekar, G.1
Sahin, F.2
|