메뉴 건너뛰기




Volumn 56, Issue 8, 2018, Pages 4507-4521

VPRS-Based regional decision fusion of CNN and MRF classifications for very fine resolution remotely sensed images

Author keywords

Convolutional neural network (CNN); Markov random field (MRF); regional fusion decision; rough set; uncertainty

Indexed keywords

CONVOLUTION; DEEP NEURAL NETWORKS; IMAGE FUSION; IMAGE SEGMENTATION; MARKOV PROCESSES; NEURAL NETWORKS; ROUGH SET THEORY; SEMANTICS; STRUCTURAL FRAMES;

EID: 85045743328     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2018.2822783     Document Type: Article
Times cited : (68)

References (61)
  • 1
    • 84861161549 scopus 로고    scopus 로고
    • Very highresolution remote sensing: Challenges and opportunities [point of view]
    • Jun
    • J. A. Benediktsson, J. Chanussot, and W. M. Moon, "Very highresolution remote sensing: Challenges and opportunities [point of view]," Proc. IEEE, vol. 100, no. 6, pp. 1907-1910, Jun. 2012.
    • (2012) Proc. IEEE , vol.100 , Issue.6 , pp. 1907-1910
    • Benediktsson, J.A.1    Chanussot, J.2    Moon, W.M.3
  • 2
    • 84976243077 scopus 로고    scopus 로고
    • Semantic annotation of high-resolution Satellite images via weakly supervised learning
    • Jun
    • X. Yao, J. Han, G. Cheng, X. Qian, and L. Guo, "Semantic annotation of high-resolution Satellite images via weakly supervised learning," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3660-3671, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3660-3671
    • Yao, X.1    Han, J.2    Cheng, G.3    Qian, X.4    Guo, L.5
  • 3
    • 85027956498 scopus 로고    scopus 로고
    • Accurate urban area detection in remote sensing images
    • Sep
    • H. Shi, L. Chen, F.-K. Bi, H. Chen, and Y. Yu, "Accurate urban area detection in remote sensing images," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 9, pp. 1948-1952, Sep. 2015.
    • (2015) IEEE Geosci. Remote Sens. Lett. , vol.12 , Issue.9 , pp. 1948-1952
    • Shi, H.1    Chen, L.2    Bi, F.-K.3    Chen, H.4    Yu, Y.5
  • 4
    • 84930016645 scopus 로고    scopus 로고
    • Mapping of agricultural crops from single high-resolution multispectral images-Data-driven smoothing vs. Parcel-based smoothing
    • A. Ozdarici-Ok, A. O. Ok, and K. Schindler, "Mapping of agricultural crops from single high-resolution multispectral images-Data-driven smoothing vs. parcel-based smoothing," Remote Sens., vol. 7, no. 5, pp. 5611-5638, 2015.
    • (2015) Remote Sens. , vol.7 , Issue.5 , pp. 5611-5638
    • Ozdarici-Ok, A.1    Ok, A.O.2    Schindler, K.3
  • 5
    • 80053353473 scopus 로고    scopus 로고
    • Markov-randomfield-based super-resolution mapping for identification of urban trees in VHR images
    • J. P. Ardila, V. A. Tolpekin, W. Bijker, and A. Stein, "Markov-randomfield-based super-resolution mapping for identification of urban trees in VHR images," ISPRS J. Photogramm. Remote Sens., vol. 66, no. 6, pp. 762-775, 2011.
    • (2011) ISPRS J. Photogramm. Remote Sens. , vol.66 , Issue.6 , pp. 762-775
    • Ardila, J.P.1    Tolpekin, V.A.2    Bijker, W.3    Stein, A.4
  • 6
    • 84954045719 scopus 로고    scopus 로고
    • Multiclass labeling of very high-resolution remote sensing imagery by enforcing nonlocal shared constraints in multilevel conditional random fields model
    • Jul
    • T. Zhang, W. Yan, J. Li, and J. Chen, "Multiclass labeling of very high-resolution remote sensing imagery by enforcing nonlocal shared constraints in multilevel conditional random fields model," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 7, pp. 2854-2867, Jul. 2016.
    • (2016) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.9 , Issue.7 , pp. 2854-2867
    • Zhang, T.1    Yan, W.2    Li, J.3    Chen, J.4
  • 7
    • 79959725976 scopus 로고    scopus 로고
    • Land cover classification for remote sensing imagery using conditional texton forest with historical land cover map
    • Jul
    • Z. Lei, T. Fang, and D. Li, "Land cover classification for remote sensing imagery using conditional texton forest with historical land cover map," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 720-724, Jul. 2011.
    • (2011) IEEE Geosci. Remote Sens. Lett. , vol.8 , Issue.4 , pp. 720-724
    • Lei, Z.1    Fang, T.2    Li, D.3
  • 8
    • 84928487450 scopus 로고    scopus 로고
    • A novel multi-parameter support vector machine for image classification
    • C. Zhang, T. Wang, P. M. Atkinson, X. Pan, and H. Li, "A novel multi-parameter support vector machine for image classification," Int. J. Remote Sens., vol. 36, no. 7, pp. 1890-1906, 2015.
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.7 , pp. 1890-1906
    • Zhang, C.1    Wang, T.2    Atkinson, P.M.3    Pan, X.4    Li, H.5
  • 9
    • 64549105242 scopus 로고    scopus 로고
    • A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
    • F. Pacifici, M. Chini, and W. J. Emery, "A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification," Remote Sens. Environ., vol. 113, no. 6, pp. 1276-1292, 2009.
    • (2009) Remote Sens. Environ. , vol.113 , Issue.6 , pp. 1276-1292
    • Pacifici, F.1    Chini, M.2    Emery, W.J.3
  • 10
    • 0031105739 scopus 로고    scopus 로고
    • Introduction neural networks in remote sensing
    • P. M. Atkinson and A. R. L. Tatnall, "Introduction neural networks in remote sensing," Int. J. Remote Sens., vol. 18, no. 4, pp. 699-709, 1997.
    • (1997) Int. J. Remote Sens. , vol.18 , Issue.4 , pp. 699-709
    • Atkinson, P.M.1    Tatnall, A.R.L.2
  • 11
    • 33947699893 scopus 로고    scopus 로고
    • Use of neural networks for automatic classification from high-resolution images
    • Apr
    • F. D. Frate, F. Pacifici, G. Schiavon, and C. Solimini, "Use of neural networks for automatic classification from high-resolution images," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 800-809, Apr. 2007.
    • (2007) IEEE Trans. Geosci. Remote Sens. , vol.45 , Issue.4 , pp. 800-809
    • Frate, F.D.1    Pacifici, F.2    Schiavon, G.3    Solimini, C.4
  • 12
    • 84977853388 scopus 로고    scopus 로고
    • Supervised classification of very high resolution optical images using wavelet-based textural features
    • Jun
    • O. Regniers, L. Bombrun, V. Lafon, and C. Germain, "Supervised classification of very high resolution optical images using wavelet-based textural features," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3722-3735, Jun. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.6 , pp. 3722-3735
    • Regniers, O.1    Bombrun, L.2    Lafon, V.3    Germain, C.4
  • 13
    • 0242323688 scopus 로고    scopus 로고
    • A Markov random field-based approach to decisionlevel fusion for remote sensing image classification
    • Oct
    • R. Nishii, "A Markov random field-based approach to decisionlevel fusion for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 10, pp. 2316-2319, Oct. 2003.
    • (2003) IEEE Trans. Geosci. Remote Sens. , vol.41 , Issue.10 , pp. 2316-2319
    • Nishii, R.1
  • 14
    • 0033080476 scopus 로고    scopus 로고
    • Texture classification using multiresolution Markov random field models
    • Feb
    • L. Wang and J. Liu, "Texture classification using multiresolution Markov random field models," Pattern Recognit. Lett., vol. 20, no. 2, pp. 171-182, Feb. 1999.
    • (1999) Pattern Recognit. Lett. , vol.20 , Issue.2 , pp. 171-182
    • Wang, L.1    Liu, J.2
  • 15
    • 77958488310 scopus 로고    scopus 로고
    • Deep machine learning- A new frontier in artificial intelligence research [research frontier]
    • Nov
    • I. Arel, D. C. Rose, and T. P. Karnowski, "Deep machine learning- A new frontier in artificial intelligence research [research frontier]," IEEE Comput. Intell. Mag., vol. 5, no. 4, pp. 13-18, Nov. 2010.
    • (2010) IEEE Comput. Intell. Mag. , vol.5 , Issue.4 , pp. 13-18
    • Arel, I.1    Rose, D.C.2    Karnowski, T.P.3
  • 17
    • 84931574348 scopus 로고    scopus 로고
    • Learning salient visual word for scalable mobile image retrieval
    • Oct
    • X. Yang, X. Qian, and T. Mei, "Learning salient visual word for scalable mobile image retrieval," Pattern Recognit., vol. 48, no. 10, pp. 3093-3101, Oct. 2015.
    • (2015) Pattern Recognit. , vol.48 , Issue.10 , pp. 3093-3101
    • Yang, X.1    Qian, X.2    Mei, T.3
  • 18
    • 84978388572 scopus 로고    scopus 로고
    • Using convolutional features and a sparse autoencoder for land-use scene classification
    • E. Othman, Y. Bazi, N. Alajlan, H. Alhichri, and F. Melgani, "Using convolutional features and a sparse autoencoder for land-use scene classification," Int. J. Remote Sens., vol. 37, no. 10, pp. 2149-2167, 2016.
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.10 , pp. 2149-2167
    • Othman, E.1    Bazi, Y.2    Alajlan, N.3    Alhichri, H.4    Melgani, F.5
  • 19
    • 85028222906 scopus 로고    scopus 로고
    • Vehicle type classification using a semisupervised convolutional neural network
    • Aug
    • Z. Dong, M. Pei, Y. He, T. Liu, Y. Dong, and Y. Jia, "Vehicle type classification using a semisupervised convolutional neural network," IEEE Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 2247-2256, Aug. 2015.
    • (2015) IEEE Trans. Intell. Transp. Syst. , vol.16 , Issue.4 , pp. 2247-2256
    • Dong, Z.1    Pei, M.2    He, Y.3    Liu, T.4    Dong, Y.5    Jia, Y.6
  • 20
    • 84945898896 scopus 로고    scopus 로고
    • Scene classification via a gradient boosting random convolutional network framework
    • Mar
    • F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1793-1802
    • Zhang, F.1    Du, B.2    Zhang, L.3
  • 21
    • 84956620231 scopus 로고    scopus 로고
    • Learning multiscale and deep representations for classifying remotely sensed imagery
    • Mar
    • W. Zhao and S. Du, "Learning multiscale and deep representations for classifying remotely sensed imagery," ISPRS J. Photogramm. Remote Sens., vol. 113, pp. 155-165, Mar. 2016.
    • (2016) ISPRS J. Photogramm. Remote Sens. , vol.113 , pp. 155-165
    • Zhao, W.1    Du, S.2
  • 22
    • 84978805819 scopus 로고    scopus 로고
    • Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
    • Oct
    • Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.10 , pp. 6232-6251
    • Chen, Y.1    Jiang, H.2    Li, C.3    Jia, X.4    Ghamisi, P.5
  • 23
    • 84971612769 scopus 로고    scopus 로고
    • Classification and segmentation of satellite orthoimagery using convolutional neural networks
    • M. Längkvist, A. Kiselev, M. Alirezaie, and A. Loutfi, "Classification and segmentation of satellite orthoimagery using convolutional neural networks," Remote Sens., vol. 8, no. 4, pp. 329, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.4 , pp. 329
    • Längkvist, M.1    Kiselev, A.2    Alirezaie, M.3    Loutfi, A.4
  • 24
    • 84994217941 scopus 로고    scopus 로고
    • Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
    • Feb
    • M. Volpi and D. Tuia, "Dense semantic labeling of subdecimeter resolution images with convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 881-893, Feb. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.55 , Issue.2 , pp. 881-893
    • Volpi, M.1    Tuia, D.2
  • 25
    • 85026643598 scopus 로고    scopus 로고
    • A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
    • Jun
    • C. Zhang et al., "A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification," ISPRS J. Photogramm. Remote Sens., vol. 140C, pp. 133-144, Jun. 2018.
    • (2018) ISPRS J. Photogramm. Remote Sens. , vol.140 C , pp. 133-144
    • Zhang, C.1
  • 27
    • 84886654406 scopus 로고    scopus 로고
    • Unsupervised classification based on fuzzy c-means with uncertainty analysis
    • Q. Wang and W. Shi, "Unsupervised classification based on fuzzy c-means with uncertainty analysis," Remote Sens. Lett., vol. 4, no. 11, pp. 1087-1096, 2013.
    • (2013) Remote Sens. Lett. , vol.4 , Issue.11 , pp. 1087-1096
    • Wang, Q.1    Shi, W.2
  • 28
    • 77957008534 scopus 로고    scopus 로고
    • Uncertainty analysis for the classification of multispectral satellite images using SVMs and SOMs
    • Oct
    • F. Giacco, C. Thiel, L. Pugliese, S. Scarpetta, and M. Marinaro, "Uncertainty analysis for the classification of multispectral satellite images using SVMs and SOMs," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3769-3779, Oct. 2010.
    • (2010) IEEE Trans. Geosci. Remote Sens. , vol.48 , Issue.10 , pp. 3769-3779
    • Giacco, F.1    Thiel, C.2    Pugliese, L.3    Scarpetta, S.4    Marinaro, M.5
  • 29
    • 27744565978 scopus 로고
    • Rough sets
    • Oct
    • Z. Pawlak, "Rough sets," Int. J. Comput. Inf. Sci., vol. 11, no. 5, pp. 341-356, Oct. 1982.
    • (1982) Int. J. Comput. Inf. Sci. , vol.11 , Issue.5 , pp. 341-356
    • Pawlak, Z.1
  • 30
    • 78649797191 scopus 로고    scopus 로고
    • A variable precision rough set approach to the remote sensing land use/cover classification
    • Dec
    • X. Pan, S. Zhang, H. Zhang, X. Na, and X. Li, "A variable precision rough set approach to the remote sensing land use/cover classification," Comput. Geosci., vol. 36, no. 12, pp. 1466-1473, Dec. 2010.
    • (2010) Comput. Geosci. , vol.36 , Issue.12 , pp. 1466-1473
    • Pan, X.1    Zhang, S.2    Zhang, H.3    Na, X.4    Li, X.5
  • 31
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • Mar
    • R. W. Swiniarski and A. Skowron, "Rough set methods in feature selection and recognition," Pattern Recognit. Lett., vol. 24, no. 6, pp. 833-849, Mar. 2003.
    • (2003) Pattern Recognit. Lett. , vol.24 , Issue.6 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 32
    • 72149117641 scopus 로고    scopus 로고
    • FRSVMs: Fuzzy rough set based support vector machines
    • Feb
    • D. Chen, Q. He, and X. Wang, "FRSVMs: Fuzzy rough set based support vector machines," Fuzzy Sets Syst., vol. 161, no. 4, pp. 596-607, Feb. 2010.
    • (2010) Fuzzy Sets Syst. , vol.161 , Issue.4 , pp. 596-607
    • Chen, D.1    He, Q.2    Wang, X.3
  • 33
    • 84888044158 scopus 로고    scopus 로고
    • An automatic method to determine the number of clusters using decision-theoretic rough set
    • Jan
    • Y. Hong, Z. Liu, and G. Wang, "An automatic method to determine the number of clusters using decision-theoretic rough set," Int. J. Approx. Reasoning, vol. 55, no. 1, pp. 101-115, Jan. 2014.
    • (2014) Int. J. Approx. Reasoning , vol.55 , Issue.1 , pp. 101-115
    • Hong, Y.1    Liu, Z.2    Wang, G.3
  • 34
    • 84961158575 scopus 로고    scopus 로고
    • A novel soft rough fuzzy set: Z-soft rough fuzzy ideals of hemirings and corresponding decision making
    • Apr
    • J. Zhan and K. Zhu, "A novel soft rough fuzzy set: Z-soft rough fuzzy ideals of hemirings and corresponding decision making," Soft Comput., vol. 21, no. 8, pp. 1923-1936, Apr. 2017.
    • (2017) Soft Comput. , vol.21 , Issue.8 , pp. 1923-1936
    • Zhan, J.1    Zhu, K.2
  • 35
    • 85007518475 scopus 로고    scopus 로고
    • Local multigranulation decision-theoretic rough sets
    • Mar
    • Y. Qian, X. Liang, G. Lin, Q. Guo, and J. Liang, "Local multigranulation decision-theoretic rough sets," Int. J. Approx. Reasoning, vol. 82, pp. 119-137, Mar. 2017.
    • (2017) Int. J. Approx. Reasoning , vol.82 , pp. 119-137
    • Qian, Y.1    Liang, X.2    Lin, G.3    Guo, Q.4    Liang, J.5
  • 36
    • 85012930877 scopus 로고    scopus 로고
    • Measures of uncertainty for neighborhood rough sets
    • Mar
    • Y. Chen, Y. Xue, Y. Ma, and F. Xu, "Measures of uncertainty for neighborhood rough sets," Knowl.-Based Syst., vol. 120, pp. 226-235, Mar. 2017.
    • (2017) Knowl.-Based Syst. , vol.120 , pp. 226-235
    • Chen, Y.1    Xue, Y.2    Ma, Y.3    Xu, F.4
  • 37
    • 36248994777 scopus 로고    scopus 로고
    • A rough set approach for the discovery of classification rules in interval-valued information systems
    • Feb
    • Y. Leung, M. M. Fischer, W.-Z. Wu, and J.-S. Mi, "A rough set approach for the discovery of classification rules in interval-valued information systems," Int. J. Approx. Reasoning, vol. 47, no. 2, pp. 233-246, Feb. 2008.
    • (2008) Int. J. Approx. Reasoning , vol.47 , Issue.2 , pp. 233-246
    • Leung, Y.1    Fischer, M.M.2    Wu, W.-Z.3    Mi, J.-S.4
  • 38
    • 79952556550 scopus 로고    scopus 로고
    • Application of rough set-based analysis to extract spatial relationship indicator rules: An example of land use in Pearl River Delta
    • Feb
    • Y. Ge, F. Cao, Y. Du, V. C. Lakhan, Y. Wang, and D. Li, "Application of rough set-based analysis to extract spatial relationship indicator rules: An example of land use in Pearl River Delta," J. Geograph. Sci., vol. 21, no. 1, pp. 101-117, Feb. 2011.
    • (2011) J. Geograph. Sci. , vol.21 , Issue.1 , pp. 101-117
    • Ge, Y.1    Cao, F.2    Du, Y.3    Lakhan, V.C.4    Wang, Y.5    Li, D.6
  • 39
    • 84890404816 scopus 로고    scopus 로고
    • Rough sets, kernel set, and spatiotemporal outlier detection
    • Jan
    • A. Albanese, S. K. Pal, and A. Petrosino, "Rough sets, kernel set, and spatiotemporal outlier detection," IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 194-207, Jan. 2014.
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.1 , pp. 194-207
    • Albanese, A.1    Pal, S.K.2    Petrosino, A.3
  • 40
    • 84976526025 scopus 로고    scopus 로고
    • A variable precision rough set approach to knowledge discovery in land cover classification
    • I. U. Sikder, "A variable precision rough set approach to knowledge discovery in land cover classification," Int. J. Digit. Earth, vol. 9, no. 12, pp. 1206-1223, 2016.
    • (2016) Int. J. Digit. Earth , vol.9 , Issue.12 , pp. 1206-1223
    • Sikder, I.U.1
  • 41
    • 70449377908 scopus 로고    scopus 로고
    • Rough set-derived measures in image classification accuracy assessment
    • Y. Ge, H. Bai, F. Cao, S. Li, X. Feng, and D. Li, "Rough set-derived measures in image classification accuracy assessment," Int. J. Remote Sens., vol. 30, no. 20, pp. 5323-5344, 2009.
    • (2009) Int. J. Remote Sens. , vol.30 , Issue.20 , pp. 5323-5344
    • Ge, Y.1    Bai, H.2    Cao, F.3    Li, S.4    Feng, X.5    Li, D.6
  • 42
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • May
    • Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
    • (2015) Nature , vol.521 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 43
    • 84940417789 scopus 로고    scopus 로고
    • Unsupervised deep feature extraction for remote sensing image classification
    • Mar
    • A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
    • (2016) IEEE Trans. Geosci. Remote Sens. , vol.54 , Issue.3 , pp. 1349-1362
    • Romero, A.1    Gatta, C.2    Camps-Valls, G.3
  • 45
    • 0034548685 scopus 로고    scopus 로고
    • Mapping land cover from remotely sensed data with a softened feedforward neural network classification
    • Dec
    • G. M. Foody, "Mapping land cover from remotely sensed data with a softened feedforward neural network classification," J. Intell. Robot. Syst., vol. 29, no. 4, pp. 433-449, Dec. 2000.
    • (2000) J. Intell. Robot. Syst. , vol.29 , Issue.4 , pp. 433-449
    • Foody, G.M.1
  • 49
    • 0027543613 scopus 로고
    • Variable precision rough set model
    • Feb
    • W. Ziarko, "Variable precision rough set model," J. Comput. Syst. Sci., vol. 46, no. 1, pp. 39-59, Feb. 1993.
    • (1993) J. Comput. Syst. Sci. , vol.46 , Issue.1 , pp. 39-59
    • Ziarko, W.1
  • 50
    • 33745102029 scopus 로고    scopus 로고
    • Creating a hydrographic network from its cartographic representation: A case study using Ordnance Survey MasterMap data
    • N. Regnauld and W. A. Mackaness, "Creating a hydrographic network from its cartographic representation: A case study using Ordnance Survey MasterMap data," Int. J. Geograph. Inf. Sci., vol. 20, no. 6, pp. 611-631, 2006.
    • (2006) Int. J. Geograph. Inf. Sci. , vol.20 , Issue.6 , pp. 611-631
    • Regnauld, N.1    Mackaness, W.A.2
  • 51
    • 85010208970 scopus 로고    scopus 로고
    • Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks
    • Jun./Jul
    • M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, "Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun./Jul. 2016, pp. 1-9.
    • (2016) Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW) , pp. 1-9
    • Kampffmeyer, M.1    Salberg, A.-B.2    Jenssen, R.3
  • 54
    • 0030148684 scopus 로고    scopus 로고
    • Bayesian image classification using Markov random fields
    • May
    • M. Berthod, Z. Kato, S. Yu, and J. Zerubia, "Bayesian image classification using Markov random fields," Image Vis. Comput., vol. 14, no. 4, pp. 285-295, May 1996.
    • (1996) Image Vis. Comput. , vol.14 , Issue.4 , pp. 285-295
    • Berthod, M.1    Kato, Z.2    Yu, S.3    Zerubia, J.4
  • 55
    • 84885382627 scopus 로고    scopus 로고
    • Markov Random Field modeling, inference &learning in computer vision &image understanding: A survey
    • Nov
    • C. Wang, N. Komodakis, and N. Paragios, "Markov Random Field modeling, inference &learning in computer vision &image understanding: A survey," Comput. Vis. Image Understand., vol. 117, no. 11, pp. 1610-1627, Nov. 2013.
    • (2013) Comput. Vis. Image Understand. , vol.117 , Issue.11 , pp. 1610-1627
    • Wang, C.1    Komodakis, N.2    Paragios, N.3
  • 56
    • 84978857965 scopus 로고    scopus 로고
    • A survey of methods incorporating spatial information in image classification and spectral unmixing
    • L. Wang, C. Shi, C. Diao, W. Ji, and D. Yin, "A survey of methods incorporating spatial information in image classification and spectral unmixing," Int. J. Remote Sens., vol. 37, no. 16, pp. 3870-3910, 2016.
    • (2016) Int. J. Remote Sens. , vol.37 , Issue.16 , pp. 3870-3910
    • Wang, L.1    Shi, C.2    Diao, C.3    Ji, W.4    Yin, D.5
  • 57
    • 84993982662 scopus 로고    scopus 로고
    • Pansharpening by convolutional neural networks
    • G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, "Pansharpening by convolutional neural networks," Remote Sens., vol. 8, no. 7, p. 594, 2016.
    • (2016) Remote Sens. , vol.8 , Issue.7 , pp. 594
    • Masi, G.1    Cozzolino, D.2    Verdoliva, L.3    Scarpa, G.4
  • 58
    • 0031118203 scopus 로고    scopus 로고
    • No free lunch theorems for optimization
    • Apr
    • D. H. Wolper and W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, Apr. 1997.
    • (1997) IEEE Trans. Evol. Comput. , vol.1 , Issue.1 , pp. 67-82
    • Wolper, D.H.1    Macready, W.G.2
  • 59
    • 80052792336 scopus 로고    scopus 로고
    • Identification of hazelnut fields using spectral and Gabor textural features
    • S. Reis and K. Tasdemir, "Identification of hazelnut fields using spectral and Gabor textural features," ISPRS J. Photogram. Remote Sens., vol. 66, no. 5, pp. 652-661, 2011.
    • (2011) ISPRS J. Photogram. Remote Sens. , vol.66 , Issue.5 , pp. 652-661
    • Reis, S.1    Tasdemir, K.2
  • 60
    • 84873023814 scopus 로고    scopus 로고
    • An improved simple morphological filter for the terrain classification of airborne LIDAR data
    • Mar
    • J. T. Pingel, C. K. Clarke, and A. W. McBride, "An improved simple morphological filter for the terrain classification of airborne LIDAR data," ISPRS J. Photogram. Remote Sens., vol. 77, pp. 21-30, Mar. 2013.
    • (2013) ISPRS J. Photogram. Remote Sens. , vol.77 , pp. 21-30
    • Pingel, J.T.1    Clarke, C.K.2    McBride, A.W.3
  • 61
    • 84979775123 scopus 로고    scopus 로고
    • Towards better exploiting convolutional neural networks for remote sensing scene classification
    • Jan
    • K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, "Towards better exploiting convolutional neural networks for remote sensing scene classification," Pattern Recognit., vol. 61, pp. 539-556, Jan. 2017.
    • (2017) Pattern Recognit. , vol.61 , pp. 539-556
    • Nogueira, K.1    Penatti, O.A.B.2    Dos Santos, J.A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.