-
1
-
-
84861161549
-
Very highresolution remote sensing: Challenges and opportunities [point of view]
-
Jun
-
J. A. Benediktsson, J. Chanussot, and W. M. Moon, "Very highresolution remote sensing: Challenges and opportunities [point of view]," Proc. IEEE, vol. 100, no. 6, pp. 1907-1910, Jun. 2012.
-
(2012)
Proc. IEEE
, vol.100
, Issue.6
, pp. 1907-1910
-
-
Benediktsson, J.A.1
Chanussot, J.2
Moon, W.M.3
-
2
-
-
84976243077
-
Semantic annotation of high-resolution Satellite images via weakly supervised learning
-
Jun
-
X. Yao, J. Han, G. Cheng, X. Qian, and L. Guo, "Semantic annotation of high-resolution Satellite images via weakly supervised learning," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3660-3671, Jun. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.6
, pp. 3660-3671
-
-
Yao, X.1
Han, J.2
Cheng, G.3
Qian, X.4
Guo, L.5
-
3
-
-
85027956498
-
Accurate urban area detection in remote sensing images
-
Sep
-
H. Shi, L. Chen, F.-K. Bi, H. Chen, and Y. Yu, "Accurate urban area detection in remote sensing images," IEEE Geosci. Remote Sens. Lett., vol. 12, no. 9, pp. 1948-1952, Sep. 2015.
-
(2015)
IEEE Geosci. Remote Sens. Lett.
, vol.12
, Issue.9
, pp. 1948-1952
-
-
Shi, H.1
Chen, L.2
Bi, F.-K.3
Chen, H.4
Yu, Y.5
-
4
-
-
84930016645
-
Mapping of agricultural crops from single high-resolution multispectral images-Data-driven smoothing vs. Parcel-based smoothing
-
A. Ozdarici-Ok, A. O. Ok, and K. Schindler, "Mapping of agricultural crops from single high-resolution multispectral images-Data-driven smoothing vs. parcel-based smoothing," Remote Sens., vol. 7, no. 5, pp. 5611-5638, 2015.
-
(2015)
Remote Sens.
, vol.7
, Issue.5
, pp. 5611-5638
-
-
Ozdarici-Ok, A.1
Ok, A.O.2
Schindler, K.3
-
5
-
-
80053353473
-
Markov-randomfield-based super-resolution mapping for identification of urban trees in VHR images
-
J. P. Ardila, V. A. Tolpekin, W. Bijker, and A. Stein, "Markov-randomfield-based super-resolution mapping for identification of urban trees in VHR images," ISPRS J. Photogramm. Remote Sens., vol. 66, no. 6, pp. 762-775, 2011.
-
(2011)
ISPRS J. Photogramm. Remote Sens.
, vol.66
, Issue.6
, pp. 762-775
-
-
Ardila, J.P.1
Tolpekin, V.A.2
Bijker, W.3
Stein, A.4
-
6
-
-
84954045719
-
Multiclass labeling of very high-resolution remote sensing imagery by enforcing nonlocal shared constraints in multilevel conditional random fields model
-
Jul
-
T. Zhang, W. Yan, J. Li, and J. Chen, "Multiclass labeling of very high-resolution remote sensing imagery by enforcing nonlocal shared constraints in multilevel conditional random fields model," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 9, no. 7, pp. 2854-2867, Jul. 2016.
-
(2016)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.9
, Issue.7
, pp. 2854-2867
-
-
Zhang, T.1
Yan, W.2
Li, J.3
Chen, J.4
-
7
-
-
79959725976
-
Land cover classification for remote sensing imagery using conditional texton forest with historical land cover map
-
Jul
-
Z. Lei, T. Fang, and D. Li, "Land cover classification for remote sensing imagery using conditional texton forest with historical land cover map," IEEE Geosci. Remote Sens. Lett., vol. 8, no. 4, pp. 720-724, Jul. 2011.
-
(2011)
IEEE Geosci. Remote Sens. Lett.
, vol.8
, Issue.4
, pp. 720-724
-
-
Lei, Z.1
Fang, T.2
Li, D.3
-
8
-
-
84928487450
-
A novel multi-parameter support vector machine for image classification
-
C. Zhang, T. Wang, P. M. Atkinson, X. Pan, and H. Li, "A novel multi-parameter support vector machine for image classification," Int. J. Remote Sens., vol. 36, no. 7, pp. 1890-1906, 2015.
-
(2015)
Int. J. Remote Sens.
, vol.36
, Issue.7
, pp. 1890-1906
-
-
Zhang, C.1
Wang, T.2
Atkinson, P.M.3
Pan, X.4
Li, H.5
-
9
-
-
64549105242
-
A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification
-
F. Pacifici, M. Chini, and W. J. Emery, "A neural network approach using multi-scale textural metrics from very high-resolution panchromatic imagery for urban land-use classification," Remote Sens. Environ., vol. 113, no. 6, pp. 1276-1292, 2009.
-
(2009)
Remote Sens. Environ.
, vol.113
, Issue.6
, pp. 1276-1292
-
-
Pacifici, F.1
Chini, M.2
Emery, W.J.3
-
10
-
-
0031105739
-
Introduction neural networks in remote sensing
-
P. M. Atkinson and A. R. L. Tatnall, "Introduction neural networks in remote sensing," Int. J. Remote Sens., vol. 18, no. 4, pp. 699-709, 1997.
-
(1997)
Int. J. Remote Sens.
, vol.18
, Issue.4
, pp. 699-709
-
-
Atkinson, P.M.1
Tatnall, A.R.L.2
-
11
-
-
33947699893
-
Use of neural networks for automatic classification from high-resolution images
-
Apr
-
F. D. Frate, F. Pacifici, G. Schiavon, and C. Solimini, "Use of neural networks for automatic classification from high-resolution images," IEEE Trans. Geosci. Remote Sens., vol. 45, no. 4, pp. 800-809, Apr. 2007.
-
(2007)
IEEE Trans. Geosci. Remote Sens.
, vol.45
, Issue.4
, pp. 800-809
-
-
Frate, F.D.1
Pacifici, F.2
Schiavon, G.3
Solimini, C.4
-
12
-
-
84977853388
-
Supervised classification of very high resolution optical images using wavelet-based textural features
-
Jun
-
O. Regniers, L. Bombrun, V. Lafon, and C. Germain, "Supervised classification of very high resolution optical images using wavelet-based textural features," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 6, pp. 3722-3735, Jun. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.6
, pp. 3722-3735
-
-
Regniers, O.1
Bombrun, L.2
Lafon, V.3
Germain, C.4
-
13
-
-
0242323688
-
A Markov random field-based approach to decisionlevel fusion for remote sensing image classification
-
Oct
-
R. Nishii, "A Markov random field-based approach to decisionlevel fusion for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 41, no. 10, pp. 2316-2319, Oct. 2003.
-
(2003)
IEEE Trans. Geosci. Remote Sens.
, vol.41
, Issue.10
, pp. 2316-2319
-
-
Nishii, R.1
-
14
-
-
0033080476
-
Texture classification using multiresolution Markov random field models
-
Feb
-
L. Wang and J. Liu, "Texture classification using multiresolution Markov random field models," Pattern Recognit. Lett., vol. 20, no. 2, pp. 171-182, Feb. 1999.
-
(1999)
Pattern Recognit. Lett.
, vol.20
, Issue.2
, pp. 171-182
-
-
Wang, L.1
Liu, J.2
-
15
-
-
77958488310
-
Deep machine learning- A new frontier in artificial intelligence research [research frontier]
-
Nov
-
I. Arel, D. C. Rose, and T. P. Karnowski, "Deep machine learning- A new frontier in artificial intelligence research [research frontier]," IEEE Comput. Intell. Mag., vol. 5, no. 4, pp. 13-18, Nov. 2010.
-
(2010)
IEEE Comput. Intell. Mag.
, vol.5
, Issue.4
, pp. 13-18
-
-
Arel, I.1
Rose, D.C.2
Karnowski, T.P.3
-
16
-
-
84878919540
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks," in Proc. Neural Inf. Process. Syst. (NIPS), 2012, pp. 1-9.
-
(2012)
Proc. Neural Inf. Process. Syst. (NIPS)
, pp. 1-9
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
17
-
-
84931574348
-
Learning salient visual word for scalable mobile image retrieval
-
Oct
-
X. Yang, X. Qian, and T. Mei, "Learning salient visual word for scalable mobile image retrieval," Pattern Recognit., vol. 48, no. 10, pp. 3093-3101, Oct. 2015.
-
(2015)
Pattern Recognit.
, vol.48
, Issue.10
, pp. 3093-3101
-
-
Yang, X.1
Qian, X.2
Mei, T.3
-
18
-
-
84978388572
-
Using convolutional features and a sparse autoencoder for land-use scene classification
-
E. Othman, Y. Bazi, N. Alajlan, H. Alhichri, and F. Melgani, "Using convolutional features and a sparse autoencoder for land-use scene classification," Int. J. Remote Sens., vol. 37, no. 10, pp. 2149-2167, 2016.
-
(2016)
Int. J. Remote Sens.
, vol.37
, Issue.10
, pp. 2149-2167
-
-
Othman, E.1
Bazi, Y.2
Alajlan, N.3
Alhichri, H.4
Melgani, F.5
-
19
-
-
85028222906
-
Vehicle type classification using a semisupervised convolutional neural network
-
Aug
-
Z. Dong, M. Pei, Y. He, T. Liu, Y. Dong, and Y. Jia, "Vehicle type classification using a semisupervised convolutional neural network," IEEE Trans. Intell. Transp. Syst., vol. 16, no. 4, pp. 2247-2256, Aug. 2015.
-
(2015)
IEEE Trans. Intell. Transp. Syst.
, vol.16
, Issue.4
, pp. 2247-2256
-
-
Dong, Z.1
Pei, M.2
He, Y.3
Liu, T.4
Dong, Y.5
Jia, Y.6
-
20
-
-
84945898896
-
Scene classification via a gradient boosting random convolutional network framework
-
Mar
-
F. Zhang, B. Du, and L. Zhang, "Scene classification via a gradient boosting random convolutional network framework," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1793-1802, Mar. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1793-1802
-
-
Zhang, F.1
Du, B.2
Zhang, L.3
-
21
-
-
84956620231
-
Learning multiscale and deep representations for classifying remotely sensed imagery
-
Mar
-
W. Zhao and S. Du, "Learning multiscale and deep representations for classifying remotely sensed imagery," ISPRS J. Photogramm. Remote Sens., vol. 113, pp. 155-165, Mar. 2016.
-
(2016)
ISPRS J. Photogramm. Remote Sens.
, vol.113
, pp. 155-165
-
-
Zhao, W.1
Du, S.2
-
22
-
-
84978805819
-
Deep feature extraction and classification of hyperspectral images based on convolutional neural networks
-
Oct
-
Y. Chen, H. Jiang, C. Li, X. Jia, and P. Ghamisi, "Deep feature extraction and classification of hyperspectral images based on convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 10, pp. 6232-6251, Oct. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.10
, pp. 6232-6251
-
-
Chen, Y.1
Jiang, H.2
Li, C.3
Jia, X.4
Ghamisi, P.5
-
23
-
-
84971612769
-
Classification and segmentation of satellite orthoimagery using convolutional neural networks
-
M. Längkvist, A. Kiselev, M. Alirezaie, and A. Loutfi, "Classification and segmentation of satellite orthoimagery using convolutional neural networks," Remote Sens., vol. 8, no. 4, pp. 329, 2016.
-
(2016)
Remote Sens.
, vol.8
, Issue.4
, pp. 329
-
-
Längkvist, M.1
Kiselev, A.2
Alirezaie, M.3
Loutfi, A.4
-
24
-
-
84994217941
-
Dense semantic labeling of subdecimeter resolution images with convolutional neural networks
-
Feb
-
M. Volpi and D. Tuia, "Dense semantic labeling of subdecimeter resolution images with convolutional neural networks," IEEE Trans. Geosci. Remote Sens., vol. 55, no. 2, pp. 881-893, Feb. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.2
, pp. 881-893
-
-
Volpi, M.1
Tuia, D.2
-
25
-
-
85026643598
-
A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
-
Jun
-
C. Zhang et al., "A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification," ISPRS J. Photogramm. Remote Sens., vol. 140C, pp. 133-144, Jun. 2018.
-
(2018)
ISPRS J. Photogramm. Remote Sens.
, vol.140 C
, pp. 133-144
-
-
Zhang, C.1
-
26
-
-
84897951081
-
Good practices for estimating area and assessing accuracy of land change
-
May
-
P. Olofsson, G. M. Foody, M. Herold, S. V. Stehman, C. E. Woodcock, and M. A. Wulder, "Good practices for estimating area and assessing accuracy of land change," Remote Sens. Environ., vol. 148, pp. 42-57, May 2014.
-
(2014)
Remote Sens. Environ.
, vol.148
, pp. 42-57
-
-
Olofsson, P.1
Foody, G.M.2
Herold, M.3
Stehman, S.V.4
Woodcock, C.E.5
Wulder, M.A.6
-
27
-
-
84886654406
-
Unsupervised classification based on fuzzy c-means with uncertainty analysis
-
Q. Wang and W. Shi, "Unsupervised classification based on fuzzy c-means with uncertainty analysis," Remote Sens. Lett., vol. 4, no. 11, pp. 1087-1096, 2013.
-
(2013)
Remote Sens. Lett.
, vol.4
, Issue.11
, pp. 1087-1096
-
-
Wang, Q.1
Shi, W.2
-
28
-
-
77957008534
-
Uncertainty analysis for the classification of multispectral satellite images using SVMs and SOMs
-
Oct
-
F. Giacco, C. Thiel, L. Pugliese, S. Scarpetta, and M. Marinaro, "Uncertainty analysis for the classification of multispectral satellite images using SVMs and SOMs," IEEE Trans. Geosci. Remote Sens., vol. 48, no. 10, pp. 3769-3779, Oct. 2010.
-
(2010)
IEEE Trans. Geosci. Remote Sens.
, vol.48
, Issue.10
, pp. 3769-3779
-
-
Giacco, F.1
Thiel, C.2
Pugliese, L.3
Scarpetta, S.4
Marinaro, M.5
-
29
-
-
27744565978
-
Rough sets
-
Oct
-
Z. Pawlak, "Rough sets," Int. J. Comput. Inf. Sci., vol. 11, no. 5, pp. 341-356, Oct. 1982.
-
(1982)
Int. J. Comput. Inf. Sci.
, vol.11
, Issue.5
, pp. 341-356
-
-
Pawlak, Z.1
-
30
-
-
78649797191
-
A variable precision rough set approach to the remote sensing land use/cover classification
-
Dec
-
X. Pan, S. Zhang, H. Zhang, X. Na, and X. Li, "A variable precision rough set approach to the remote sensing land use/cover classification," Comput. Geosci., vol. 36, no. 12, pp. 1466-1473, Dec. 2010.
-
(2010)
Comput. Geosci.
, vol.36
, Issue.12
, pp. 1466-1473
-
-
Pan, X.1
Zhang, S.2
Zhang, H.3
Na, X.4
Li, X.5
-
31
-
-
0037332841
-
Rough set methods in feature selection and recognition
-
Mar
-
R. W. Swiniarski and A. Skowron, "Rough set methods in feature selection and recognition," Pattern Recognit. Lett., vol. 24, no. 6, pp. 833-849, Mar. 2003.
-
(2003)
Pattern Recognit. Lett.
, vol.24
, Issue.6
, pp. 833-849
-
-
Swiniarski, R.W.1
Skowron, A.2
-
32
-
-
72149117641
-
FRSVMs: Fuzzy rough set based support vector machines
-
Feb
-
D. Chen, Q. He, and X. Wang, "FRSVMs: Fuzzy rough set based support vector machines," Fuzzy Sets Syst., vol. 161, no. 4, pp. 596-607, Feb. 2010.
-
(2010)
Fuzzy Sets Syst.
, vol.161
, Issue.4
, pp. 596-607
-
-
Chen, D.1
He, Q.2
Wang, X.3
-
33
-
-
84888044158
-
An automatic method to determine the number of clusters using decision-theoretic rough set
-
Jan
-
Y. Hong, Z. Liu, and G. Wang, "An automatic method to determine the number of clusters using decision-theoretic rough set," Int. J. Approx. Reasoning, vol. 55, no. 1, pp. 101-115, Jan. 2014.
-
(2014)
Int. J. Approx. Reasoning
, vol.55
, Issue.1
, pp. 101-115
-
-
Hong, Y.1
Liu, Z.2
Wang, G.3
-
34
-
-
84961158575
-
A novel soft rough fuzzy set: Z-soft rough fuzzy ideals of hemirings and corresponding decision making
-
Apr
-
J. Zhan and K. Zhu, "A novel soft rough fuzzy set: Z-soft rough fuzzy ideals of hemirings and corresponding decision making," Soft Comput., vol. 21, no. 8, pp. 1923-1936, Apr. 2017.
-
(2017)
Soft Comput.
, vol.21
, Issue.8
, pp. 1923-1936
-
-
Zhan, J.1
Zhu, K.2
-
35
-
-
85007518475
-
Local multigranulation decision-theoretic rough sets
-
Mar
-
Y. Qian, X. Liang, G. Lin, Q. Guo, and J. Liang, "Local multigranulation decision-theoretic rough sets," Int. J. Approx. Reasoning, vol. 82, pp. 119-137, Mar. 2017.
-
(2017)
Int. J. Approx. Reasoning
, vol.82
, pp. 119-137
-
-
Qian, Y.1
Liang, X.2
Lin, G.3
Guo, Q.4
Liang, J.5
-
36
-
-
85012930877
-
Measures of uncertainty for neighborhood rough sets
-
Mar
-
Y. Chen, Y. Xue, Y. Ma, and F. Xu, "Measures of uncertainty for neighborhood rough sets," Knowl.-Based Syst., vol. 120, pp. 226-235, Mar. 2017.
-
(2017)
Knowl.-Based Syst.
, vol.120
, pp. 226-235
-
-
Chen, Y.1
Xue, Y.2
Ma, Y.3
Xu, F.4
-
37
-
-
36248994777
-
A rough set approach for the discovery of classification rules in interval-valued information systems
-
Feb
-
Y. Leung, M. M. Fischer, W.-Z. Wu, and J.-S. Mi, "A rough set approach for the discovery of classification rules in interval-valued information systems," Int. J. Approx. Reasoning, vol. 47, no. 2, pp. 233-246, Feb. 2008.
-
(2008)
Int. J. Approx. Reasoning
, vol.47
, Issue.2
, pp. 233-246
-
-
Leung, Y.1
Fischer, M.M.2
Wu, W.-Z.3
Mi, J.-S.4
-
38
-
-
79952556550
-
Application of rough set-based analysis to extract spatial relationship indicator rules: An example of land use in Pearl River Delta
-
Feb
-
Y. Ge, F. Cao, Y. Du, V. C. Lakhan, Y. Wang, and D. Li, "Application of rough set-based analysis to extract spatial relationship indicator rules: An example of land use in Pearl River Delta," J. Geograph. Sci., vol. 21, no. 1, pp. 101-117, Feb. 2011.
-
(2011)
J. Geograph. Sci.
, vol.21
, Issue.1
, pp. 101-117
-
-
Ge, Y.1
Cao, F.2
Du, Y.3
Lakhan, V.C.4
Wang, Y.5
Li, D.6
-
39
-
-
84890404816
-
Rough sets, kernel set, and spatiotemporal outlier detection
-
Jan
-
A. Albanese, S. K. Pal, and A. Petrosino, "Rough sets, kernel set, and spatiotemporal outlier detection," IEEE Trans. Knowl. Data Eng., vol. 26, no. 1, pp. 194-207, Jan. 2014.
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.1
, pp. 194-207
-
-
Albanese, A.1
Pal, S.K.2
Petrosino, A.3
-
40
-
-
84976526025
-
A variable precision rough set approach to knowledge discovery in land cover classification
-
I. U. Sikder, "A variable precision rough set approach to knowledge discovery in land cover classification," Int. J. Digit. Earth, vol. 9, no. 12, pp. 1206-1223, 2016.
-
(2016)
Int. J. Digit. Earth
, vol.9
, Issue.12
, pp. 1206-1223
-
-
Sikder, I.U.1
-
41
-
-
70449377908
-
Rough set-derived measures in image classification accuracy assessment
-
Y. Ge, H. Bai, F. Cao, S. Li, X. Feng, and D. Li, "Rough set-derived measures in image classification accuracy assessment," Int. J. Remote Sens., vol. 30, no. 20, pp. 5323-5344, 2009.
-
(2009)
Int. J. Remote Sens.
, vol.30
, Issue.20
, pp. 5323-5344
-
-
Ge, Y.1
Bai, H.2
Cao, F.3
Li, S.4
Feng, X.5
Li, D.6
-
42
-
-
84930630277
-
Deep learning
-
May
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, pp. 436-444, May 2015.
-
(2015)
Nature
, vol.521
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
43
-
-
84940417789
-
Unsupervised deep feature extraction for remote sensing image classification
-
Mar
-
A. Romero, C. Gatta, and G. Camps-Valls, "Unsupervised deep feature extraction for remote sensing image classification," IEEE Trans. Geosci. Remote Sens., vol. 54, no. 3, pp. 1349-1362, Mar. 2016.
-
(2016)
IEEE Trans. Geosci. Remote Sens.
, vol.54
, Issue.3
, pp. 1349-1362
-
-
Romero, A.1
Gatta, C.2
Camps-Valls, G.3
-
44
-
-
77952610482
-
Performance and scalability of GPU-based convolutional neural networks
-
Feb
-
D. Strigl, K. Kofler, and S. Podlipnig, "Performance and scalability of GPU-based convolutional neural networks," in Proc. 18th Euromicro Conf. Parallel, Distrib. Netw.-Based Process., Feb. 2010, pp. 317-324.
-
(2010)
Proc. 18th Euromicro Conf. Parallel, Distrib. Netw.-Based Process.
, pp. 317-324
-
-
Strigl, D.1
Kofler, K.2
Podlipnig, S.3
-
45
-
-
0034548685
-
Mapping land cover from remotely sensed data with a softened feedforward neural network classification
-
Dec
-
G. M. Foody, "Mapping land cover from remotely sensed data with a softened feedforward neural network classification," J. Intell. Robot. Syst., vol. 29, no. 4, pp. 433-449, Dec. 2000.
-
(2000)
J. Intell. Robot. Syst.
, vol.29
, Issue.4
, pp. 433-449
-
-
Foody, G.M.1
-
49
-
-
0027543613
-
Variable precision rough set model
-
Feb
-
W. Ziarko, "Variable precision rough set model," J. Comput. Syst. Sci., vol. 46, no. 1, pp. 39-59, Feb. 1993.
-
(1993)
J. Comput. Syst. Sci.
, vol.46
, Issue.1
, pp. 39-59
-
-
Ziarko, W.1
-
50
-
-
33745102029
-
Creating a hydrographic network from its cartographic representation: A case study using Ordnance Survey MasterMap data
-
N. Regnauld and W. A. Mackaness, "Creating a hydrographic network from its cartographic representation: A case study using Ordnance Survey MasterMap data," Int. J. Geograph. Inf. Sci., vol. 20, no. 6, pp. 611-631, 2006.
-
(2006)
Int. J. Geograph. Inf. Sci.
, vol.20
, Issue.6
, pp. 611-631
-
-
Regnauld, N.1
Mackaness, W.A.2
-
51
-
-
85010208970
-
Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks
-
Jun./Jul
-
M. Kampffmeyer, A.-B. Salberg, and R. Jenssen, "Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun./Jul. 2016, pp. 1-9.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW)
, pp. 1-9
-
-
Kampffmeyer, M.1
Salberg, A.-B.2
Jenssen, R.3
-
52
-
-
84990051868
-
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. (2016). "DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs." [Online]. Available: http://arxiv.org/abs/1606.00915
-
(2016)
DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs.
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
53
-
-
84905925092
-
Deep learning-based classification of hyperspectral data
-
Jun
-
Y. Chen, Z. Lin, X. Zhao, G. Wang, and Y. Gu, "Deep learning-based classification of hyperspectral data," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2094-2107, Jun. 2014.
-
(2014)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
, vol.7
, Issue.6
, pp. 2094-2107
-
-
Chen, Y.1
Lin, Z.2
Zhao, X.3
Wang, G.4
Gu, Y.5
-
54
-
-
0030148684
-
Bayesian image classification using Markov random fields
-
May
-
M. Berthod, Z. Kato, S. Yu, and J. Zerubia, "Bayesian image classification using Markov random fields," Image Vis. Comput., vol. 14, no. 4, pp. 285-295, May 1996.
-
(1996)
Image Vis. Comput.
, vol.14
, Issue.4
, pp. 285-295
-
-
Berthod, M.1
Kato, Z.2
Yu, S.3
Zerubia, J.4
-
55
-
-
84885382627
-
Markov Random Field modeling, inference &learning in computer vision &image understanding: A survey
-
Nov
-
C. Wang, N. Komodakis, and N. Paragios, "Markov Random Field modeling, inference &learning in computer vision &image understanding: A survey," Comput. Vis. Image Understand., vol. 117, no. 11, pp. 1610-1627, Nov. 2013.
-
(2013)
Comput. Vis. Image Understand.
, vol.117
, Issue.11
, pp. 1610-1627
-
-
Wang, C.1
Komodakis, N.2
Paragios, N.3
-
56
-
-
84978857965
-
A survey of methods incorporating spatial information in image classification and spectral unmixing
-
L. Wang, C. Shi, C. Diao, W. Ji, and D. Yin, "A survey of methods incorporating spatial information in image classification and spectral unmixing," Int. J. Remote Sens., vol. 37, no. 16, pp. 3870-3910, 2016.
-
(2016)
Int. J. Remote Sens.
, vol.37
, Issue.16
, pp. 3870-3910
-
-
Wang, L.1
Shi, C.2
Diao, C.3
Ji, W.4
Yin, D.5
-
57
-
-
84993982662
-
Pansharpening by convolutional neural networks
-
G. Masi, D. Cozzolino, L. Verdoliva, and G. Scarpa, "Pansharpening by convolutional neural networks," Remote Sens., vol. 8, no. 7, p. 594, 2016.
-
(2016)
Remote Sens.
, vol.8
, Issue.7
, pp. 594
-
-
Masi, G.1
Cozzolino, D.2
Verdoliva, L.3
Scarpa, G.4
-
58
-
-
0031118203
-
No free lunch theorems for optimization
-
Apr
-
D. H. Wolper and W. G. Macready, "No free lunch theorems for optimization," IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 67-82, Apr. 1997.
-
(1997)
IEEE Trans. Evol. Comput.
, vol.1
, Issue.1
, pp. 67-82
-
-
Wolper, D.H.1
Macready, W.G.2
-
59
-
-
80052792336
-
Identification of hazelnut fields using spectral and Gabor textural features
-
S. Reis and K. Tasdemir, "Identification of hazelnut fields using spectral and Gabor textural features," ISPRS J. Photogram. Remote Sens., vol. 66, no. 5, pp. 652-661, 2011.
-
(2011)
ISPRS J. Photogram. Remote Sens.
, vol.66
, Issue.5
, pp. 652-661
-
-
Reis, S.1
Tasdemir, K.2
-
60
-
-
84873023814
-
An improved simple morphological filter for the terrain classification of airborne LIDAR data
-
Mar
-
J. T. Pingel, C. K. Clarke, and A. W. McBride, "An improved simple morphological filter for the terrain classification of airborne LIDAR data," ISPRS J. Photogram. Remote Sens., vol. 77, pp. 21-30, Mar. 2013.
-
(2013)
ISPRS J. Photogram. Remote Sens.
, vol.77
, pp. 21-30
-
-
Pingel, J.T.1
Clarke, C.K.2
McBride, A.W.3
-
61
-
-
84979775123
-
Towards better exploiting convolutional neural networks for remote sensing scene classification
-
Jan
-
K. Nogueira, O. A. B. Penatti, and J. A. dos Santos, "Towards better exploiting convolutional neural networks for remote sensing scene classification," Pattern Recognit., vol. 61, pp. 539-556, Jan. 2017.
-
(2017)
Pattern Recognit.
, vol.61
, pp. 539-556
-
-
Nogueira, K.1
Penatti, O.A.B.2
Dos Santos, J.A.3
|