메뉴 건너뛰기




Volumn 36, Issue 7, 2015, Pages 1890-1906

A novel multi-parameter support vector machine for image classification

Author keywords

[No Author keywords available]

Indexed keywords

IMAGE CLASSIFICATION; REMOTE SENSING; WETLANDS;

EID: 84928487450     PISSN: 01431161     EISSN: 13665901     Source Type: Journal    
DOI: 10.1080/01431161.2015.1029096     Document Type: Article
Times cited : (21)

References (46)
  • 1
    • 84875675131 scopus 로고    scopus 로고
    • Object-Based Fusion of Multitemporal Multiangle ENVISAT ASAR and HJ-1B Multispectral Data for Urban Land-Cover Mapping
    • Ban, Y., and A. Jacob. 2013. “Object-Based Fusion of Multitemporal Multiangle ENVISAT ASAR and HJ-1B Multispectral Data for Urban Land-Cover Mapping.” IEEE Transactions on Geoscience and Remote Sensing 51 (4): 1998–2006. doi:10.1109/TGRS.2012.2236560.
    • (2013) IEEE Transactions on Geoscience and Remote Sensing , vol.51 , Issue.4 , pp. 1998-2006
    • Ban, Y.1    Jacob, A.2
  • 2
    • 34249816831 scopus 로고    scopus 로고
    • Semisupervised PSO-SVM Regression for Biophysical Parameter Estimation
    • Bazi, Y., and F. Melgani. 2007. “Semisupervised PSO-SVM Regression for Biophysical Parameter Estimation.” IEEE Transactions on Geoscience and Remote Sensing 45 (6): 1887–1895. doi:10.1109/TGRS.2007.895845.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.6 , pp. 1887-1895
    • Bazi, Y.1    Melgani, F.2
  • 3
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Predictors
    • Breiman, L. 1996. “Bagging Predictors.” Machine Learning 24 (2): 123–140. doi:10.1007/BF00058655.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 4
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-Based Methods for Hyperspectral Image Classification
    • Camps-Valls, G., and L. Bruzzone. 2005. “Kernel-Based Methods for Hyperspectral Image Classification.” IEEE Transactions on Geoscience and Remote Sensing 43 (6): 1351–1362. doi:10.1109/TGRS.2005.846154.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 7
    • 0035273693 scopus 로고    scopus 로고
    • Enhanced Algorithm Performance for Land Cover Classification from Remotely Sensed Data Using Bagging and Boosting
    • Chan, J. C.-W., H. Chengquan, and R. DeFries. 2001. “Enhanced Algorithm Performance for Land Cover Classification from Remotely Sensed Data Using Bagging and Boosting.” IEEE Transactions on Geoscience and Remote Sensing 39: 693–695. doi:10.1109/36.911126.
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , pp. 693-695
    • Chan, J.C.-W.1    Chengquan, H.2    DeFries, R.3
  • 9
    • 0033493306 scopus 로고    scopus 로고
    • Diachronic Analysis of Fuzzy Objects
    • Cheng, T., and M. Molenaar. 1999. “Diachronic Analysis of Fuzzy Objects.” GeoInformatica 3 (4): 337–355. doi:10.1023/A:1009884730822.
    • (1999) GeoInformatica , vol.3 , Issue.4 , pp. 337-355
    • Cheng, T.1    Molenaar, M.2
  • 10
    • 0026278621 scopus 로고
    • A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data
    • Congalton, R. G. 1991. “A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data.” Remote Sensing of Environment 37 (1): 35–46. doi:10.1016/0034-4257(91)90048-B.
    • (1991) Remote Sensing of Environment , vol.37 , Issue.1 , pp. 35-46
    • Congalton, R.G.1
  • 11
    • 0021424184 scopus 로고
    • A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap
    • Crist, E. P., and R. C. Cicone. 1984. “A Physically-Based Transformation of Thematic Mapper Data—The TM Tasseled Cap.” IEEE Transactions on Geoscience and Remote Sensing GE-22: 256–263. doi:10.1109/TGRS.1984.350619.
    • (1984) IEEE Transactions on Geoscience and Remote Sensing , vol.GE-22 , pp. 256-263
    • Crist, E.P.1    Cicone, R.C.2
  • 12
    • 3042654673 scopus 로고    scopus 로고
    • A Relative Evaluation of Multiclass Image Classification by Support Vector Machines
    • Foody, G. M., and A. Mathur. 2004. “A Relative Evaluation of Multiclass Image Classification by Support Vector Machines.” IEEE Transactions on Geoscience and Remote Sensing 42: 1335–1343. doi:10.1109/TGRS.2004.827257.
    • (2004) IEEE Transactions on Geoscience and Remote Sensing , vol.42 , pp. 1335-1343
    • Foody, G.M.1    Mathur, A.2
  • 14
    • 0033100735 scopus 로고    scopus 로고
    • Maximizing Land Cover Classification Accuracies Produced by Decision Trees at Continental to Global Scales
    • Friedl, M. A., C. E. Brodley, and A. H. Strahler. 1999. “Maximizing Land Cover Classification Accuracies Produced by Decision Trees at Continental to Global Scales.” IEEE Transactions on Geoscience and Remote Sensing 37: 969–977. doi:10.1109/36.752215.
    • (1999) IEEE Transactions on Geoscience and Remote Sensing , vol.37 , pp. 969-977
    • Friedl, M.A.1    Brodley, C.E.2    Strahler, A.H.3
  • 15
    • 15844394276 scopus 로고    scopus 로고
    • Evolutionary Tuning of Multiple SVM Parameters
    • Friedrichs, F., and C. Igel. 2005. “Evolutionary Tuning of Multiple SVM Parameters.” Neurocomputing 64: 107–117. doi:10.1016/j.neucom.2004.11.022.
    • (2005) Neurocomputing , vol.64 , pp. 107-117
    • Friedrichs, F.1    Igel, C.2
  • 16
    • 0034482939 scopus 로고    scopus 로고
    • Optical-Biophysical Relationships of Vegetation Spectra without Background Contamination
    • Gao, X., A. R. Huete, W. Ni, and T. Miura. 2000. “Optical-Biophysical Relationships of Vegetation Spectra without Background Contamination.” Remote Sensing of Environment 74: 609–620. doi:10.1016/S0034-4257(00)00150-4.
    • (2000) Remote Sensing of Environment , vol.74 , pp. 609-620
    • Gao, X.1    Huete, A.R.2    Ni, W.3    Miura, T.4
  • 17
    • 79955448374 scopus 로고    scopus 로고
    • Contextual Land-Cover Classification: Incorporating Spatial Dependence in Land-Cover Classification Models Using Random Forests and the Getis Statistic
    • Ghimire, B., J. Rogan, and J. Miller. 2010. “Contextual Land-Cover Classification: Incorporating Spatial Dependence in Land-Cover Classification Models Using Random Forests and the Getis Statistic.” Remote Sensing Letters 1: 45–54. doi:10.1080/01431160903252327.
    • (2010) Remote Sensing Letters , vol.1 , pp. 45-54
    • Ghimire, B.1    Rogan, J.2    Miller, J.3
  • 18
    • 67349269946 scopus 로고    scopus 로고
    • A Multiobjective Genetic SVM Approach for Classification Problems with Limited Training Samples
    • Ghoggali, N., F. Melgani, and Y. Bazi. 2009. “A Multiobjective Genetic SVM Approach for Classification Problems with Limited Training Samples.” IEEE Transactions on Geoscience and Remote Sensing 47: 1707–1718. doi:10.1109/TGRS.2008.2007128.
    • (2009) IEEE Transactions on Geoscience and Remote Sensing , vol.47 , pp. 1707-1718
    • Ghoggali, N.1    Melgani, F.2    Bazi, Y.3
  • 19
    • 78049383639 scopus 로고    scopus 로고
    • A Practical Guide to Support Vector Classification
    • Hsu, C.-W., C.-C. Chang, and C.-J. Lin. 2010. “A Practical Guide to Support Vector Classification.” Bioinformatics 1: 1–16.
    • (2010) Bioinformatics , vol.1 , pp. 1-16
    • Hsu, C.-W.1    Chang, C.-C.2    Lin, C.-J.3
  • 20
    • 0036505670 scopus 로고    scopus 로고
    • A Comparison of Methods for Multiclass Support Vector Machines
    • Hsu, C.-W., and C.-J. Lin. 2002. “A Comparison of Methods for Multiclass Support Vector Machines.” IEEE Transactions on Neural Networks 13: 415–425. doi:10.1109/72.991427.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , pp. 415-425
    • Hsu, C.-W.1    Lin, C.-J.2
  • 21
    • 0037138473 scopus 로고    scopus 로고
    • An Assessment of Support Vector Machines for Land Cover Classification
    • Huang, C., L. S. Davis, and J. R. G. Townshend. 2002. “An Assessment of Support Vector Machines for Land Cover Classification.” International Journal of Remote Sensing 23: 725–749. doi:10.1080/01431160110040323.
    • (2002) International Journal of Remote Sensing , vol.23 , pp. 725-749
    • Huang, C.1    Davis, L.S.2    Townshend, J.R.G.3
  • 22
    • 23844441268 scopus 로고    scopus 로고
    • Estimating and Accommodating Uncertainty through the Soft Classification of Remote Sensing Data
    • Ibrahim, M. A., M. K. Arora, and S. K. Ghosh. 2005. “Estimating and Accommodating Uncertainty through the Soft Classification of Remote Sensing Data.” International Journal of Remote Sensing 26: 2995–3007. doi:10.1080/01431160500057806.
    • (2005) International Journal of Remote Sensing , vol.26 , pp. 2995-3007
    • Ibrahim, M.A.1    Arora, M.K.2    Ghosh, S.K.3
  • 23
    • 33847296690 scopus 로고    scopus 로고
    • The Analysis of Seasonal Activity of Photosynthesis and Efficiency of Various Vegetative Communities on a Basis NDVI for Modeling of Biosphere Processes
    • Ivanova, Y. D., S. I. Bartsev, A. A. Pochekutov, and A. V. Kartushinsky. 2007. “The Analysis of Seasonal Activity of Photosynthesis and Efficiency of Various Vegetative Communities on a Basis NDVI for Modeling of Biosphere Processes.” Advances in Space Research 39: 95–99. doi:10.1016/j.asr.2006.02.028.
    • (2007) Advances in Space Research , vol.39 , pp. 95-99
    • Ivanova, Y.D.1    Bartsev, S.I.2    Pochekutov, A.A.3    Kartushinsky, A.V.4
  • 24
    • 25144499574 scopus 로고    scopus 로고
    • Disturbance and the Three Parameters of Wetland Delineation
    • Janisch, J. E., and N. E. Molstad. 2004. “Disturbance and the Three Parameters of Wetland Delineation.” Wetlands 24: 820–827. doi:10.1672/0277-5212(2004)024[0820:DATTPO]2.0.CO;2.
    • (2004) Wetlands , vol.24 , pp. 820-827
    • Janisch, J.E.1    Molstad, N.E.2
  • 25
  • 26
    • 48749109333 scopus 로고    scopus 로고
    • Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines
    • Lin, S.-W., K.-C. Ying, S.-C. Chen, and Z.-J. Lee. 2008. “Particle Swarm Optimization for Parameter Determination and Feature Selection of Support Vector Machines.” Expert Systems with Applications 35: 1817–1824. doi:10.1016/j.eswa.2007.08.088.
    • (2008) Expert Systems with Applications , vol.35 , pp. 1817-1824
    • Lin, S.-W.1    Ying, K.-C.2    Chen, S.-C.3    Lee, Z.-J.4
  • 27
    • 56549085451 scopus 로고    scopus 로고
    • Evolutionary Tuning of SVM Parameter Values in Multiclass Problems
    • Lorena, A. C., and A. C. P. L. F. De Carvalho. 2008. “Evolutionary Tuning of SVM Parameter Values in Multiclass Problems.” Neurocomputing 71: 3326–3334. doi:10.1016/j.neucom.2008.01.031.
    • (2008) Neurocomputing , vol.71 , pp. 3326-3334
    • Lorena, A.C.1    De Carvalho, A.C.P.L.F.2
  • 28
    • 33947591833 scopus 로고    scopus 로고
    • A Survey of Image Classification Methods and Techniques for Improving Classification Performance
    • Lu, D., and Q. Weng. 2007. “A Survey of Image Classification Methods and Techniques for Improving Classification Performance.” International Journal of Remote Sensing 28: 823–870. doi:10.1080/01431160600746456.
    • (2007) International Journal of Remote Sensing , vol.28 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 29
    • 17844363481 scopus 로고    scopus 로고
    • Bankruptcy Prediction Using Support Vector Machine with Optimal Choice of Kernel Function Parameters
    • Min, J. H., and Y.-C. Lee. 2005. “Bankruptcy Prediction Using Support Vector Machine with Optimal Choice of Kernel Function Parameters.” Expert Systems with Applications 28: 603–614. doi:10.1016/j.eswa.2004.12.008.
    • (2005) Expert Systems with Applications , vol.28 , pp. 603-614
    • Min, J.H.1    Lee, Y.-C.2
  • 31
    • 67650072485 scopus 로고    scopus 로고
    • Integrating TM and Ancillary Geographical Data with Classification Trees for Land Cover Classification of Marsh Area
    • Na, X., S. Zhang, H. Zhang, X. Li, H. Yu, and C. Liu. 2009. “Integrating TM and Ancillary Geographical Data with Classification Trees for Land Cover Classification of Marsh Area.” Chinese Geographical Science 19: 177–185. doi:10.1007/s11769-009-0177-y.
    • (2009) Chinese Geographical Science , vol.19 , pp. 177-185
    • Na, X.1    Zhang, S.2    Zhang, H.3    Li, X.4    Yu, H.5    Liu, C.6
  • 32
    • 43049106852 scopus 로고    scopus 로고
    • Ensemble of Support Vector Machines for Land Cover Classification
    • Pal, M. 2008. “Ensemble of Support Vector Machines for Land Cover Classification.” International Journal of Remote Sensing 29: 3043–3049. doi:10.1080/01431160802007624.
    • (2008) International Journal of Remote Sensing , vol.29 , pp. 3043-3049
    • Pal, M.1
  • 33
    • 78649797191 scopus 로고    scopus 로고
    • A Variable Precision Rough Set Approach to the Remote Sensing Land Use/cover Classification
    • Pan, X., S. Zhang, H. Zhang, X. Na, and X. Li. 2010. “A Variable Precision Rough Set Approach to the Remote Sensing Land Use/cover Classification.” Computers and Geosciences 36: 1466–1473. doi:10.1016/j.cageo.2009.11.010.
    • (2010) Computers and Geosciences , vol.36 , pp. 1466-1473
    • Pan, X.1    Zhang, S.2    Zhang, H.3    Na, X.4    Li, X.5
  • 35
    • 84860601047 scopus 로고    scopus 로고
    • Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points
    • Shao, Y., and R. S. Lunetta. 2012. “Comparison of Support Vector Machine, Neural Network, and CART Algorithms for the Land-Cover Classification Using Limited Training Data Points.” ISPRS Journal of Photogrammetry and Remote Sensing 70: 78–87. doi:10.1016/j.isprsjprs.2012.04.001.
    • (2012) ISPRS Journal of Photogrammetry and Remote Sensing , vol.70 , pp. 78-87
    • Shao, Y.1    Lunetta, R.S.2
  • 36
    • 67649669804 scopus 로고    scopus 로고
    • Optimizing Support Vector Machine Learning for Semi-Arid Vegetation Mapping by Using Clustering Analysis
    • Su, L. 2009. “Optimizing Support Vector Machine Learning for Semi-Arid Vegetation Mapping by Using Clustering Analysis.” ISPRS Journal of Photogrammetry and Remote Sensing 64: 407–413. doi:10.1016/j.isprsjprs.2009.02.002.
    • (2009) ISPRS Journal of Photogrammetry and Remote Sensing , vol.64 , pp. 407-413
    • Su, L.1
  • 39
    • 67349246242 scopus 로고    scopus 로고
    • A Novel Pattern Recognition Algorithm: Combining ART Network with SVM to Reconstruct a Multi-Class Classifier
    • Wang, A., W. Yuan, J. Liu, Z. Yu, and H. Li. 2009. “A Novel Pattern Recognition Algorithm: Combining ART Network with SVM to Reconstruct a Multi-Class Classifier.” Computers and Mathematics with Applications 57: 1908–1914. doi:10.1016/j.camwa.2008.10.052.
    • (2009) Computers and Mathematics with Applications , vol.57 , pp. 1908-1914
    • Wang, A.1    Yuan, W.2    Liu, J.3    Yu, Z.4    Li, H.5
  • 40
    • 36349007145 scopus 로고    scopus 로고
    • Fusion of Support Vector Machines for Classification of Multisensor Data
    • Waske, B., and J. A. Benediktsson. 2007. “Fusion of Support Vector Machines for Classification of Multisensor Data.” IEEE Transactions on Geoscience and Remote Sensing 45 (12): 3858–3866. doi:10.1109/TGRS.2007.898446.
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.12 , pp. 3858-3866
    • Waske, B.1    Benediktsson, J.A.2
  • 41
    • 38949149377 scopus 로고    scopus 로고
    • Multisource Classification Using Support Vector Machines: An Empirical Comparison with Decision Tree and Neural Network Classifiers
    • Watanachaturaporn, P., M. K. Arora, and P. K. Varshney. 2008. “Multisource Classification Using Support Vector Machines: An Empirical Comparison with Decision Tree and Neural Network Classifiers.” Photogrammetric Engineering and Remote Sensing 74: 239–246. doi:10.14358/PERS.74.2.239.
    • (2008) Photogrammetric Engineering and Remote Sensing , vol.74 , pp. 239-246
    • Watanachaturaporn, P.1    Arora, M.K.2    Varshney, P.K.3
  • 43
    • 33751068050 scopus 로고    scopus 로고
    • A Real-Valued Genetic Algorithm to Optimize the Parameters of Support Vector Machine for Predicting Bankruptcy
    • Wu, C.-H., G.-H. Tzeng, Y.-J. Goo, and W.-C. Fang. 2007. “A Real-Valued Genetic Algorithm to Optimize the Parameters of Support Vector Machine for Predicting Bankruptcy.” Expert Systems with Applications 32: 397–408. doi:10.1016/j.eswa.2005.12.008.
    • (2007) Expert Systems with Applications , vol.32 , pp. 397-408
    • Wu, C.-H.1    Tzeng, G.-H.2    Goo, Y.-J.3    Fang, W.-C.4
  • 44
    • 58249083168 scopus 로고    scopus 로고
    • Choosing the Kernel Parameters for Support Vector Machines by the Inter-Cluster Distance in the Feature Space
    • Wu, K.-P., and S.-D. Wang. 2009. “Choosing the Kernel Parameters for Support Vector Machines by the Inter-Cluster Distance in the Feature Space.” Pattern Recognition 42: 710–717. doi:10.1016/j.patcog.2008.08.030.
    • (2009) Pattern Recognition , vol.42 , pp. 710-717
    • Wu, K.-P.1    Wang, S.-D.2
  • 45
    • 67650006604 scopus 로고    scopus 로고
    • Identifying Wetland Change in China’s Sanjiang Plain Using Remote Sensing
    • Zhang, S., X. Na, B. Kong, Z. Wang, H. Jiang, H. Yu, Z. Zhao, X. Li, C. Liu, and P. Dale. 2009. “Identifying Wetland Change in China’s Sanjiang Plain Using Remote Sensing.” Wetlands 29: 302–313. doi:10.1672/08-04.1.
    • (2009) Wetlands , vol.29 , pp. 302-313
    • Zhang, S.1    Na, X.2    Kong, B.3    Wang, Z.4    Jiang, H.5    Yu, H.6    Zhao, Z.7    Li, X.8    Liu, C.9    Dale, P.10
  • 46
    • 0036113847 scopus 로고    scopus 로고
    • Classification Using ASTER Data and SVM Algorithms: The Case Study of Beer Sheva, Israel
    • Zhu, G., and D. G. Blumberg. 2002. “Classification Using ASTER Data and SVM Algorithms: The Case Study of Beer Sheva, Israel.” Remote Sensing of Environment 80: 233–240. doi:10.1016/S0034-4257(01)00305-4.
    • (2002) Remote Sensing of Environment , vol.80 , pp. 233-240
    • Zhu, G.1    Blumberg, D.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.