메뉴 건너뛰기




Volumn 26, Issue 1, 2014, Pages 194-207

Rough sets, kernel set, and spatiotemporal outlier detection

Author keywords

Outlier detection; Rough set and granular computing; Spatiotemporal data; Spatiotemporal uncertainty management

Indexed keywords

KNOWLEDGE DISCOVERY AND DATA MININGS; LOWER AND UPPER APPROXIMATIONS; OUTLIER DETECTION; ROUGH SET APPROXIMATION; ROUGH-FUZZY CLUSTERING; SPATIO-TEMPORAL DATA; SPATIOTEMPORAL OUTLIER DETECTION; UNCERTAINTY MANAGEMENT;

EID: 84890404816     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2012.234     Document Type: Article
Times cited : (70)

References (57)
  • 2
    • 17444413786 scopus 로고    scopus 로고
    • An effective and efficient algorithm for high-dimensional outlier detection
    • DOI 10.1007/s00778-004-0125-5
    • C.C. Aggarwal and P.S. Yu, "An Effective and Efficient Algorithm for High-Dimensional Outlier Detection, " VLDB J., vol. 14, pp. 211-221, 2005. (Pubitemid 40536894)
    • (2005) VLDB Journal , vol.14 , Issue.2 , pp. 211-221
    • Aggarwal, C.C.1    Yu, P.S.2
  • 3
    • 84890369632 scopus 로고    scopus 로고
    • A non parametric approach to the outlier detection in spatio-temporal data analysis
    • D'Atri, et al., eds., Springer Verlag
    • A. Albanese and A. Petrosino, "A Non Parametric Approach to the Outlier Detection in Spatio-Temporal Data Analysis, " Information Technology and Innovation Trends in Organizations, D'Atri, et al., eds., pp. 101-108, Springer Verlag, 2011.
    • (2011) Information Technology and Innovation Trends in Organizations , pp. 101-108
    • Albanese, A.1    Petrosino, A.2
  • 4
    • 14644423912 scopus 로고    scopus 로고
    • Outlier mining in large high-dimensional data sets
    • DOI 10.1109/TKDE.2005.31
    • F. Angiulli and C. Pizzuti, "Outlier Mining in Large High- Dimensional Data Sets, " IEEE Trans. Knowledge and Data Eng., vol. 17, no. 2, pp. 203-215, Feb. 2005. (Pubitemid 40320179)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.2 , pp. 203-215
    • Angiulli, F.1    Pizzuti, C.2
  • 5
    • 77649270693 scopus 로고    scopus 로고
    • Distance-based outlier queries in data streams: The novel task and algorithms
    • F. Angiulli and F. Fassetti, "Distance-Based Outlier Queries in Data Streams: The Novel Task and Algorithms, " J. Data Mining and Knowledge Discovery, vol. 20, no. 2, pp. 290-324, 2010.
    • (2010) J. Data Mining and Knowledge Discovery , vol.20 , Issue.2 , pp. 290-324
    • Angiulli, F.1    Fassetti, F.2
  • 9
    • 85032420421 scopus 로고    scopus 로고
    • Spatio-temporal outlier detection in large databases
    • D. Birant and A. Kut, "Spatio-Temporal Outlier Detection in Large Databases, " J. Computing and Information Technology, vol. 14, no. 4, pp. 291-297, 2006.
    • (2006) J. Computing and Information Technology , vol.14 , Issue.4 , pp. 291-297
    • Birant, D.1    Kut, A.2
  • 14
  • 17
    • 33644761839 scopus 로고    scopus 로고
    • A multiscale approach to detect spatio- temporal outliers
    • T. Cheng and Z. Li, "A Multiscale Approach to Detect Spatio- Temporal Outliers, " Trans. GIS, vol. 10, no. 2, pp. 253-263, 2006.
    • (2006) Trans. GIS , vol.10 , Issue.2 , pp. 253-263
    • Cheng, T.1    Li, Z.2
  • 19
    • 26444610038 scopus 로고    scopus 로고
    • Nearest neighbor search on moving object trajectories
    • Advances in Spatial and Temporal Databases: 9th International Symposium, SSTD 2005. Proceedings
    • E. Frentzos, K. Gratsias, N. Pelekis, and Y. Theodoridis, "Nearest Neighbor Search on Moving Object Trajectories, " Proc. Ninth Int'l Symp. Spatial and Temporal Databases (SSTD '05), pp. 328-345, 2005. (Pubitemid 41433173)
    • (2005) Lecture Notes in Computer Science , vol.3633 , pp. 328-345
    • Frentzos, E.1    Gratsias, K.2    Pelekis, N.3    Theodoridis, Y.4
  • 20
    • 19744370419 scopus 로고    scopus 로고
    • On maximum depth classifiers
    • A.K. Ghosh and P. Chaudhuri, "On Maximum Depth Classifiers, " Scandinavian J. Statistics, vol. 32, no. 2, pp. 327-350, 2005.
    • (2005) Scandinavian J. Statistics , vol.32 , Issue.2 , pp. 327-350
    • Ghosh, A.K.1    Chaudhuri, P.2
  • 21
    • 0032091595 scopus 로고    scopus 로고
    • CURE: An efficient clustering algorithm for large databases
    • S. Guha, R. Rastogi, and K. Shim, "CURE: An Efficient Clustering Algorithm for Large Databases, " Proc. ACM SIGMOD Int'l Conf. Management Data, vol. 27, no. 2, pp. 73-84, 1998. (Pubitemid 128655958)
    • (1998) SIGMOD Record , vol.27 , Issue.2 , pp. 73-84
    • Guha, S.1    Rastogi, R.2    Shim, K.3
  • 24
    • 0037410488 scopus 로고    scopus 로고
    • Discovering cluster-based local outliers
    • Z. He, X. Xu, and S. Deng, "Discovering Cluster-Based Local Outliers, " J. Pattern Recognition Letters, vol. 24, pp. 1641-1650, 2003.
    • (2003) J. Pattern Recognition Letters , vol.24 , pp. 1641-1650
    • He, Z.1    Xu, X.2    Deng, S.3
  • 25
    • 7544223741 scopus 로고    scopus 로고
    • A survey of outlier detection methodologies
    • V. Hodge and J. Austin, "A Survey of Outlier Detection Methodologies, " J. Artificial Intelligence Rev., vol. 22, no. 2, pp. 85-126, 2004.
    • (2004) J. Artificial Intelligence Rev , vol.22 , Issue.2 , pp. 85-126
    • Hodge, V.1    Austin, J.2
  • 28
    • 58349088297 scopus 로고    scopus 로고
    • Some issues about outlier detection in rough set theory
    • F. Jiang, Y. Sui, and C. Cao, "Some Issues about Outlier Detection in Rough Set Theory, " Expert Systems with Applications, vol. 36, no. 3, pp. 4680-4687, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 4680-4687
    • Jiang, F.1    Sui, Y.2    Cao, C.3
  • 29
    • 19744375379 scopus 로고    scopus 로고
    • 1 data depth
    • DOI 10.1016/j.jmva.2004.02.013, Multivariate Methods in Genomic Data Analysis
    • R. Jornsten, "Clustering and Classification Based on the L1 Data Depth, " J. Multivariate Analysis, vol. 90, no. 1, pp. 67-89, 2004. (Pubitemid 41137007)
    • (2004) Journal of Multivariate Analysis , vol.90 , Issue.1 SPEC. ISSUE. , pp. 67-89
    • Jornsten, R.1
  • 32
    • 77649275031 scopus 로고    scopus 로고
    • A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes
    • A. Koufakou and M. Georgiopoulos, "A Fast Outlier Detection Strategy for Distributed High-Dimensional Data Sets with Mixed Attributes, " Data Mining and Knowledge Discovery, vol. 20, no. 2, pp. 259-289, 2010.
    • (2010) Data Mining and Knowledge Discovery , vol.20 , Issue.2 , pp. 259-289
    • Koufakou, A.1    Georgiopoulos, M.2
  • 35
    • 36749070903 scopus 로고    scopus 로고
    • Rough set based generalized fuzzy C-Means algorithm and quantitative indices
    • DOI 10.1109/TSMCB.2007.906578
    • P. Maji and S.K. Pal, "Rough Set Based Generalized Fuzzy CMeans Algorithm and Quantitative Indices, " IEEE Trans. Systems, Man, and Cybernetics-Part B: Cybernetics, vol. 37, no. 6, pp. 1529- 1540, Dec. 2007. (Pubitemid 350201160)
    • (2007) IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics , vol.37 , Issue.6 , pp. 1529-1540
    • Maji, P.1    Pal, S.K.2
  • 36
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review part 1: Statistical approaches
    • M. Markos and S. Sameer, "Novelty Detection: A Review Part 1: Statistical Approaches, " Signal Processing, vol. 83, no. 12, pp. 2481- 2497, 2003.
    • (2003) Signal Processing , vol.83 , Issue.12 , pp. 2481-2497
    • Markos, M.1    Sameer, S.2
  • 38
    • 0036709106 scopus 로고    scopus 로고
    • CLARANS: A method for clustering objects for spatial data mining
    • DOI 10.1109/TKDE.2002.1033770
    • R.T. Ng and J. Han, "CLARANS: A Method for Clustering Objects for Spatial Data Mining, " IEEE Trans. Knowledge and Data Eng., vol. 14, no. 5, pp. 1003-1016, Sept./Oct. 2002. (Pubitemid 35242611)
    • (2002) IEEE Transactions on Knowledge and Data Engineering , vol.14 , Issue.5 , pp. 1003-1016
    • Ng, R.T.1    Han, J.2
  • 45
    • 22044455069 scopus 로고    scopus 로고
    • Density-based clustering in spatial databases: The algorithm gdbscan and its applications
    • J. Sander, M. Ester, H.-P. Kriegel, and X. Xu, "Density-Based Clustering in Spatial Databases: The Algorithm GDBSCAN and Its Applications, " Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 169-194, 1998.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.2 , pp. 169-194
    • Sander, J.1    Ester, M.2    Kriegel, H.-P.3    Xu, X.4
  • 48
    • 0042063657 scopus 로고    scopus 로고
    • Visualizing categorical data in ViSta
    • DOI 10.1016/S0167-9473(02)00289-X, PII S016794730200289X
    • P.M. Valero Mora, F.W. Young, and M. Friendly, "Visualizing Categorical Data in ViSta, " Computational Statistics Data Analysis, vol. 43, no. 4, pp. 495-508, 2003. (Pubitemid 36990917)
    • (2003) Computational Statistics and Data Analysis , vol.43 , Issue.4 , pp. 495-508
    • Valero-Mora, P.M.1    Young, F.W.2    Friendly, M.3
  • 53
    • 0001375356 scopus 로고    scopus 로고
    • Two views of the theory of rough sets in finite universes
    • PII S0888613X96000716
    • Y.Y. Yao, "Two Views of the Theory of Rough Sets in Finite Universes, " Int'l J. Approximate Reasoning, vol. 15, pp. 291-317, 1996. (Pubitemid 126414908)
    • (1996) International Journal of Approximate Reasoning , vol.15 , Issue.4 SPEC. ISSUE. , pp. 291-317
    • Yao, Y.Y.1
  • 55
    • 40849120409 scopus 로고    scopus 로고
    • LDBOD: A novel local distribution based outlier detector
    • Y. Zhang, S. Yang, and Y. Wang, "LDBOD: A Novel Local Distribution Based Outlier Detector, " Pattern Recognition Letters, vol. 29, no. 7, pp. 967-976, 2008.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.7 , pp. 967-976
    • Zhang, Y.1    Yang, S.2    Wang, Y.3
  • 57
    • 34548588734 scopus 로고    scopus 로고
    • Example-based robust outlier detection in high dimensional datasets
    • DOI 10.1109/ICDM.2005.59, 1565793, Proceedings - Fifth IEEE International Conference on Data Mining, ICDM 2005
    • C. Zhu, H. Kitagawa, and C. Faloutsos, "Example-Based Robust Outlier Detection in High Dimensional Data Sets, " Proc. IEEE Fifth Int'l. Conf. Data Mining (ICDM '05), pp. 829-832, Nov. 2005. (Pubitemid 47385807)
    • (2005) Proceedings - IEEE International Conference on Data Mining, ICDM , pp. 829-832
    • Zhu, C.1    Kitagawa, H.2    Faloutsos, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.