메뉴 건너뛰기




Volumn 36, Issue 12, 2010, Pages 1466-1473

A variable precision rough set approach to the remote sensing land use/cover classification

Author keywords

Knowledge discovery; Overlapping data; Remote sensing classification; Variable precision rough sets; VPRS

Indexed keywords

KNOWLEDGE DISCOVERY; OVERLAPPING DATA; REMOTE SENSING CLASSIFICATION; VARIABLE PRECISION ROUGH SETS; VPRS;

EID: 78649797191     PISSN: 00983004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cageo.2009.11.010     Document Type: Article
Times cited : (43)

References (29)
  • 1
    • 24644509734 scopus 로고    scopus 로고
    • Using uncertain conceptual spaces to translate between land cover categories
    • Ahlqvist O. Using uncertain conceptual spaces to translate between land cover categories. International Journal Geographical Information Science 2005, 19(7):831-857.
    • (2005) International Journal Geographical Information Science , vol.19 , Issue.7 , pp. 831-857
    • Ahlqvist, O.1
  • 4
    • 22744439166 scopus 로고    scopus 로고
    • Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis
    • Brian L.B., David P.L., Jiaguo Q. Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second-derivative analysis. Remote Sensing of Environment 2005, 97(2):238-248.
    • (2005) Remote Sensing of Environment , vol.97 , Issue.2 , pp. 238-248
    • Brian, L.B.1    David, P.L.2    Jiaguo, Q.3
  • 5
    • 0242322799 scopus 로고    scopus 로고
    • Rough set-aided keyword reduction for text categorization
    • Chouchoulas A., Shen.Q. Rough set-aided keyword reduction for text categorization. Applied Artifcial Intelligence 2001, 15(9):843-873.
    • (2001) Applied Artifcial Intelligence , vol.15 , Issue.9 , pp. 843-873
    • Chouchoulas, A.1    Shen, Q.2
  • 8
    • 78649768872 scopus 로고
    • Maintenance of reducts in the variable precision rough sets model. In: Proceedings of the 1995 ACM Computer Science Conference, USA.
    • Kryszkiewicz, M., 1995. Maintenance of reducts in the variable precision rough sets model. In: Proceedings of the 1995 ACM Computer Science Conference, USA. pp. 355-372.
    • (1995) , pp. 355-372
    • Kryszkiewicz, M.1
  • 9
    • 0033079944 scopus 로고    scopus 로고
    • Rules in incomplete information systems
    • Kryszkiewicz M. Rules in incomplete information systems. Information Sciences 1999, 113(3-4):271-292.
    • (1999) Information Sciences , vol.113 , Issue.3-4 , pp. 271-292
    • Kryszkiewicz, M.1
  • 11
    • 0036127473 scopus 로고    scopus 로고
    • Input feature selection for classification problems
    • Kwak N., Choi C.H. Input feature selection for classification problems. IEEE Transactions on Neural Networks 2002, 13(1):143-159.
    • (2002) IEEE Transactions on Neural Networks , vol.13 , Issue.1 , pp. 143-159
    • Kwak, N.1    Choi, C.H.2
  • 12
    • 39549119328 scopus 로고    scopus 로고
    • The comparison of PCA and discrete rough set for feature extraction of remote sensing image classification-a case study on rice classification
    • Lei T.C., Wan S., Chou T.Y. The comparison of PCA and discrete rough set for feature extraction of remote sensing image classification-a case study on rice classification. Computational Geosciences 2007, 12(1):1-14.
    • (2007) Computational Geosciences , vol.12 , Issue.1 , pp. 1-14
    • Lei, T.C.1    Wan, S.2    Chou, T.Y.3
  • 14
    • 26944493770 scopus 로고    scopus 로고
    • Several approaches to attribute reduction in variable precision rough set model
    • Springer, Berlin
    • Masahiro I. Several approaches to attribute reduction in variable precision rough set model. Modeling Decisions for Artificial Intelligence 2005, Springer, Berlin, pp.215-226. 10.1007/11526018_22.
    • (2005) Modeling Decisions for Artificial Intelligence , pp. 215-226
    • Masahiro, I.1
  • 15
    • 0002675367 scopus 로고
    • Quantization of real values attributes, rough set and Boolean reasoning approach. In: Proceedings of the Second Joint Conference on Information Sciences, Wrightsville Beach, NC, USA.
    • Nguyen, H.S., Skowron, A., 1995. Quantization of real values attributes, rough set and Boolean reasoning approach. In: Proceedings of the Second Joint Conference on Information Sciences, Wrightsville Beach, NC, USA. pp. 34-37.
    • (1995) , pp. 34-37
    • Nguyen, H.S.1    Skowron, A.2
  • 16
    • 33747120577 scopus 로고    scopus 로고
    • Land cover classification based on tolerant rough set
    • Ouyang Y., Ma J.W. Land cover classification based on tolerant rough set. International Journal of Remote Sensing 2006, 24(14):3041-3047.
    • (2006) International Journal of Remote Sensing , vol.24 , Issue.14 , pp. 3041-3047
    • Ouyang, Y.1    Ma, J.W.2
  • 17
    • 0036875221 scopus 로고    scopus 로고
    • Multispectral image segmentation using the rough-set-initialized EM algorithm
    • Pal S.K., Mitra P. Multispectral image segmentation using the rough-set-initialized EM algorithm. IEEE Transactions on Geoscience and Remote Sensing 2002, 40(11):2495-2501.
    • (2002) IEEE Transactions on Geoscience and Remote Sensing , vol.40 , Issue.11 , pp. 2495-2501
    • Pal, S.K.1    Mitra, P.2
  • 21
    • 0343303373 scopus 로고    scopus 로고
    • Quantification error versus location error in comparison of categorical maps
    • Pontius R.G. Quantification error versus location error in comparison of categorical maps. Photogrammetric Engineering and Remote Sensing 2000, 66(8):1011-1016.
    • (2000) Photogrammetric Engineering and Remote Sensing , vol.66 , Issue.8 , pp. 1011-1016
    • Pontius, R.G.1
  • 23
    • 0036833247 scopus 로고    scopus 로고
    • A rough-fuzzy approach for generating classification rules
    • Shen Q., Chouchoulas A. A rough-fuzzy approach for generating classification rules. Pattern Recognition 2002, 35(11):2425-2438.
    • (2002) Pattern Recognition , vol.35 , Issue.11 , pp. 2425-2438
    • Shen, Q.1    Chouchoulas, A.2
  • 27
    • 0028922775 scopus 로고    scopus 로고
    • Combining rough sets learning and neural learning: method to deal with uncertain and imprecise information
    • Yasdi Y. Combining rough sets learning and neural learning: method to deal with uncertain and imprecise information. Neural Computing 1996, 7(1):61-84.
    • (1996) Neural Computing , vol.7 , Issue.1 , pp. 61-84
    • Yasdi, Y.1
  • 29
    • 0035414934 scopus 로고    scopus 로고
    • Probabilistic decision tables in the variable precision rough set model
    • Ziarko W. Probabilistic decision tables in the variable precision rough set model. Computational Intelligence 2001, 17(3):593-603.
    • (2001) Computational Intelligence , vol.17 , Issue.3 , pp. 593-603
    • Ziarko, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.