-
1
-
-
84876804736
-
The global distribution and burden of dengue
-
Bhatt S,Gething PW, Brady OJ, Messina JP, Farlow AW, et al. 2013. The global distribution and burden of dengue. Nature 496:504-7
-
(2013)
Nature
, vol.496
, pp. 504-507
-
-
Bhatt, S.1
Gething, P.W.2
Brady, O.J.3
Messina, J.P.4
Farlow, A.W.5
-
2
-
-
84861830178
-
The economic burden of dengue
-
Gubler DJ. 2012. The economic burden of dengue. Am. J. Trop. Med. Hyg. 86:743-44
-
(2012)
Am. J. Trop. Med. Hyg.
, vol.86
, pp. 743-744
-
-
Gubler, D.J.1
-
3
-
-
0034712444
-
Neurological manifestations of dengue infection
-
Solomon T, Dung NM, Vaughn DW, Kneen R, Thao LT, et al. 2000. Neurological manifestations of dengue infection. Lancet 355:1053-59
-
(2000)
Lancet
, vol.355
, pp. 1053-1059
-
-
Solomon, T.1
Dung, N.M.2
Vaughn, D.W.3
Kneen, R.4
Thao, L.T.5
-
4
-
-
0038386683
-
Emergence and global spread of a dengue serotype 3, subtype III virus
-
MesserWB, Gubler DJ, Harris E, Sivananthan K, de Silva AM. 2003. Emergence and global spread of a dengue serotype 3, subtype III virus. Emerg. Infect. Dis. 9:800-9
-
(2003)
Emerg. Infect. Dis.
, vol.9
, pp. 800-809
-
-
Messer, W.B.1
Gubler, D.J.2
Harris, E.3
Sivananthan, K.4
De Silva, A.M.5
-
5
-
-
84943577112
-
Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness
-
Manokaran G, Finol E, Wang C, Gunaratne J, Bahl J, et al. 2015. Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness. Science 350:217-21
-
(2015)
Science
, vol.350
, pp. 217-221
-
-
Manokaran, G.1
Finol, E.2
Wang, C.3
Gunaratne, J.4
Bahl, J.5
-
6
-
-
0037378525
-
American genotype structures decrease dengue virus output from human monocytes and dendritic cells
-
ColognaR,Rico-Hesse R. 2003. American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J. Virol. 77:3929-38
-
(2003)
J. Virol.
, vol.77
, pp. 3929-3938
-
-
Cologna, R.1
Rico-Hesse, R.2
-
7
-
-
35748929379
-
Dengue
-
Halstead SB. 2007. Dengue. Lancet 370:1644-52
-
(2007)
Lancet
, vol.370
, pp. 1644-1652
-
-
Halstead, S.B.1
-
9
-
-
84964689174
-
Guillain-Barre syndrome (42 cases) occurring during a Zika virus outbreak in French Polynesia
-
Watrin L, Ghawche F, Larre P, Neau JP, Mathis S, Fournier E. 2016. Guillain-Barre syndrome (42 cases) occurring during a Zika virus outbreak in French Polynesia. Medicine 95:e3257
-
(2016)
Medicine
, vol.95
, pp. e3257
-
-
Watrin, L.1
Ghawche, F.2
Larre, P.3
Neau, J.P.4
Mathis, S.5
Fournier, E.6
-
10
-
-
84992125472
-
Guillain-Barre syndrome associated with Zika virus infection in Colombia
-
Parra B,Lizarazo J, Jimenez-Arango JA, Zea-Vera AF,Gonzalez-Manrique G, et al. 2016. Guillain-Barre syndrome associated with Zika virus infection in Colombia. N. Engl. J. Med. 375:1513-23
-
(2016)
N. Engl. J. Med.
, vol.375
, pp. 1513-1523
-
-
Parra, B.1
Lizarazo, J.2
Jimenez-Arango, J.A.3
Zea-Vera, A.F.4
Gonzalez-Manrique, G.5
-
11
-
-
84961223887
-
Guillain-Barre syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study
-
Cao-Lormeau VM, Blake A,Mons S, Lastere S, Roche C, et al. 2016. Guillain-Barre syndrome outbreak associated with Zika virus infection in French Polynesia: a case-control study. Lancet 387:1531-39
-
(2016)
Lancet
, vol.387
, pp. 1531-1539
-
-
Cao-Lormeau, V.M.1
Blake, A.2
Mons, S.3
Lastere, S.4
Roche, C.5
-
12
-
-
84961231029
-
CNS infections: Zika virus infection could trigger Guillain-Barre syndrome
-
Malkki H. 2016. CNS infections: Zika virus infection could trigger Guillain-Barre syndrome. Nat. Rev. Neurol. 12:187
-
(2016)
Nat. Rev. Neurol.
, vol.12
, pp. 187
-
-
Malkki, H.1
-
13
-
-
84969559736
-
Evidence of sexual transmission of Zika virus
-
D'Ortenzio E, Matheron S, Yazdanpanah Y, de Lamballerie X,Hubert B, et al. 2016. Evidence of sexual transmission of Zika virus. N. Engl. J. Med. 374:2195-98
-
(2016)
N. Engl. J. Med.
, vol.374
, pp. 2195-2198
-
-
D'Ortenzio, E.1
Matheron, S.2
Yazdanpanah, Y.3
De Lamballerie, X.4
Hubert, B.5
-
15
-
-
85015348752
-
Infection dynamics in a traveller with persistent shedding of Zika virus RNA in semen for six months after returning from Haiti to Italy, January 2016
-
Barzon L, Pacenti M, Franchin E, Lavezzo E, Trevisan M, et al. 2016. Infection dynamics in a traveller with persistent shedding of Zika virus RNA in semen for six months after returning from Haiti to Italy, January 2016. Eurosurveillance 21:30316
-
(2016)
Eurosurveillance
, vol.21
, pp. 30316
-
-
Barzon, L.1
Pacenti, M.2
Franchin, E.3
Lavezzo, E.4
Trevisan, M.5
-
16
-
-
85008517770
-
Long-term kinetics of Zika virus RNA and antibodies in body fluids of a vasectomized traveller returning from Martinique: A case report
-
Froeschl G, Huber K, von Sonnenburg F, Nothdurft HD, Bretzel G, et al. 2017. Long-term kinetics of Zika virus RNA and antibodies in body fluids of a vasectomized traveller returning from Martinique: a case report. BMC Infect. Dis. 17:55
-
(2017)
BMC Infect. Dis.
, vol.17
, pp. 55
-
-
Froeschl, G.1
Huber, K.2
Von Sonnenburg, F.3
Nothdurft, H.D.4
Bretzel, G.5
-
17
-
-
85006335500
-
Prolonged detection of Zika virus in vaginal secretions and whole blood
-
Murray KO, Gorchakov R, Carlson AR, Berry R, Lai L, et al. 2017. Prolonged detection of Zika virus in vaginal secretions and whole blood. Emerg. Infect. Dis. 23:99-101
-
(2017)
Emerg. Infect. Dis.
, vol.23
, pp. 99-101
-
-
Murray, K.O.1
Gorchakov, R.2
Carlson, A.R.3
Berry, R.4
Lai, L.5
-
18
-
-
84994059378
-
Zika virus: Immunity and vaccine development
-
Pierson TC, Graham BS. 2016. Zika virus: immunity and vaccine development. Cell 167:625-31
-
(2016)
Cell
, vol.167
, pp. 625-631
-
-
Pierson, T.C.1
Graham, B.S.2
-
20
-
-
85023209686
-
Identifying candidate targets of immune responses in Zika virus based on homology to epitopes in other flavivirus species
-
Nov.15
-
Xu X, Vaughan K, Weiskopf D, Grifoni A, Diamond MS, et al. 2016. Identifying candidate targets of immune responses in Zika virus based on homology to epitopes in other flavivirus species. PLOS Currents Outbreaks, Nov.15 https://dx.doi.org/10.1371/currents.outbreaks. 9aa2e1fb61b0f632f58a098773008c4b
-
(2016)
PLOS Currents Outbreaks
-
-
Xu, X.1
Vaughan, K.2
Weiskopf, D.3
Grifoni, A.4
Diamond, M.S.5
-
21
-
-
84989945183
-
Broadly neutralizing activity of Zika virus-immune sera identifies a single viral serotype
-
Dowd KA, DeMaso CR, Pelc RS, Speer SD, Smith AR, et al. 2016. Broadly neutralizing activity of Zika virus-immune sera identifies a single viral serotype. Cell Rep. 16:1485-91
-
(2016)
Cell Rep.
, vol.16
, pp. 1485-1491
-
-
Dowd, K.A.1
DeMaso, C.R.2
Pelc, R.S.3
Speer, S.D.4
Smith, A.R.5
-
24
-
-
58149388463
-
Functional importance of dengue virus maturation: Infectious properties of immature virions
-
Zybert IA, van der Ende-Metselaar H, Wilschut J, Smit JM. 2008. Functional importance of dengue virus maturation: infectious properties of immature virions. J. Gen. Virol. 89:3047-51
-
(2008)
J. Gen. Virol.
, vol.89
, pp. 3047-3051
-
-
Zybert, I.A.1
Van Der Ende-Metselaar, H.2
Wilschut, J.3
Smit, J.M.4
-
25
-
-
55249088356
-
Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction
-
Junjhon J, Lausumpao M, Supasa S, Noisakran S, Songjaeng A, et al. 2008. Differential modulation of prM cleavage, extracellular particle distribution, and virus infectivity by conserved residues at nonfurin consensus positions of the dengue virus pr-M junction. J. Virol. 82:10776-91
-
(2008)
J. Virol.
, vol.82
, pp. 10776-10791
-
-
Junjhon, J.1
Lausumpao, M.2
Supasa, S.3
Noisakran, S.4
Songjaeng, A.5
-
26
-
-
1642499388
-
Structure of the dengue virus envelope protein after membrane fusion
-
Modis Y, Ogata S, Clements D,Harrison SC. 2004. Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313-19
-
(2004)
Nature
, vol.427
, pp. 313-319
-
-
Modis, Y.1
Ogata, S.2
Clements, D.3
Harrison, S.C.4
-
27
-
-
11144244755
-
Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein
-
Modis Y, Ogata S, Clements D, Harrison SC. 2005. Variable surface epitopes in the crystal structure of dengue virus type 3 envelope glycoprotein. J. Virol. 79:1223-31
-
(2005)
J. Virol.
, vol.79
, pp. 1223-1231
-
-
Modis, Y.1
Ogata, S.2
Clements, D.3
Harrison, S.C.4
-
28
-
-
84992512259
-
Innate immune escape by Dengue and West Nile viruses
-
Gack MU, Diamond MS. 2016. Innate immune escape by Dengue and West Nile viruses. Curr. Opin. Virol. 20:119-28
-
(2016)
Curr. Opin. Virol.
, vol.20
, pp. 119-128
-
-
Gack, M.U.1
Diamond, M.S.2
-
29
-
-
84905400783
-
G3BP1,G3BP2andCAPRIN1are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA
-
BidetK,DadlaniD,Garcia-BlancoMA.2014. G3BP1,G3BP2andCAPRIN1are required for translation of interferon stimulated mRNAs and are targeted by a dengue virus non-coding RNA. PLOS Pathog. 10:e1004242
-
(2014)
PLOS Pathog.
, vol.10
, pp. e1004242
-
-
Bidet, K.1
Dadlani, D.2
Ma, G.3
-
30
-
-
84994245990
-
Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil
-
Donald CL, Brennan B, Cumberworth SL, Rezelj VV, Clark JJ, et al. 2016. Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil. PLOS Negl. Trop.Dis. 10:e0005048
-
(2016)
PLOS Negl. Trop.Dis.
, vol.10
, pp. e0005048
-
-
Donald, C.L.1
Brennan, B.2
Cumberworth, S.L.3
Rezelj, V.V.4
Clark, J.J.5
-
31
-
-
0030764559
-
Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate
-
Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, et al. 1997. Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat. Med. 3:866-71
-
(1997)
Nat. Med.
, vol.3
, pp. 866-871
-
-
Chen, Y.1
Maguire, T.2
Hileman, R.E.3
Fromm, J.R.4
Esko, J.D.5
-
32
-
-
50149086295
-
A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads
-
Prestwood TR, Prigozhin DM, Sharar KL, Zellweger RM, Shresta S. 2008. A mouse-passaged dengue virus strain with reduced affinity for heparan sulfate causes severe disease in mice by establishing increased systemic viral loads. J. Virol. 82:8411-21
-
(2008)
J. Virol.
, vol.82
, pp. 8411-8421
-
-
Prestwood, T.R.1
Prigozhin, D.M.2
Sharar, K.L.3
Zellweger, R.M.4
Shresta, S.5
-
33
-
-
0344642934
-
DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells
-
Tassaneetrithep B, Burgess TH, Granelli-Piperno A, Trumpfheller C, Finke J, et al. 2003. DC-SIGN (CD209) mediates dengue virus infection of human dendritic cells. J. Exp. Med. 197:823-29
-
(2003)
J. Exp. Med.
, vol.197
, pp. 823-829
-
-
Tassaneetrithep, B.1
Burgess, T.H.2
Granelli-Piperno, A.3
Trumpfheller, C.4
Finke, J.5
-
34
-
-
0041563793
-
Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses
-
Navarro-Sanchez E, Altmeyer R, Amara A, Schwartz O, Fieschi F, et al. 2003. Dendritic-cell-specific ICAM3-grabbing non-integrin is essential for the productive infection of human dendritic cells by mosquito-cell-derived dengue viruses. EMBO Rep. 4:1-6
-
(2003)
EMBO Rep.
, vol.4
, pp. 1-6
-
-
Navarro-Sanchez, E.1
Altmeyer, R.2
Amara, A.3
Schwartz, O.4
Fieschi, F.5
-
35
-
-
79957483733
-
Lectin switching during dengue virus infection
-
Dejnirattisai W, Webb AI, Chan V, Jumnainsong A, Davidson A, et al. 2011. Lectin switching during dengue virus infection. J. Infect. Dis. 203:1775-83
-
(2011)
J. Infect. Dis.
, vol.203
, pp. 1775-1783
-
-
Dejnirattisai, W.1
Webb, A.I.2
Chan, V.3
Jumnainsong, A.4
Davidson, A.5
-
36
-
-
40349100411
-
The mannose receptor mediates dengue virus infection of macrophages
-
Miller JL, de Wet BJ, Martinez-Pomares L, Radcliffe CM, Dwek RA, et al. 2008. The mannose receptor mediates dengue virus infection of macrophages. PLOS Pathog. 4:e17
-
(2008)
PLOS Pathog.
, vol.4
, pp. e17
-
-
Miller, J.L.1
De Wet, B.J.2
Martinez-Pomares, L.3
Radcliffe, C.M.4
Dwek, R.A.5
-
37
-
-
84867647748
-
The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry
-
Meertens L, Carnec X, Lecoin MP, Ramdasi R, Guivel-Benhassine F, et al. 2012. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe 12:544-57
-
(2012)
Cell Host Microbe
, vol.12
, pp. 544-557
-
-
Meertens, L.1
Carnec, X.2
Lecoin, M.P.3
Ramdasi, R.4
Guivel-Benhassine, F.5
-
38
-
-
84953897925
-
The phosphatidylserine and phosphatidylethanolamine receptor CD300a binds dengue virus and enhances infection
-
Carnec X,Meertens L, Dejarnac O, Perera-LecoinM,HafirassouML, et al. 2015. The phosphatidylserine and phosphatidylethanolamine receptor CD300a binds dengue virus and enhances infection. J. Virol. 90:92-102
-
(2015)
J. Virol.
, vol.90
, pp. 92-102
-
-
Carnec, X.1
Meertens, L.2
Dejarnac, O.3
Perera-Lecoin, M.4
Hafirassou, M.L.5
-
39
-
-
85000607350
-
Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection
-
Wells MF, Salick MR, Wiskow O, Ho DJ, Worringer KA, et al. 2016. Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from Zika virus infection. Cell Stem Cell 19:703-8
-
(2016)
Cell Stem Cell
, vol.19
, pp. 703-708
-
-
Wells, M.F.1
Salick, M.R.2
Wiskow, O.3
Ho, D.J.4
Worringer, K.A.5
-
40
-
-
85013705077
-
Zika virus infection damages the testes in mice
-
Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A, et al. 2016. Zika virus infection damages the testes in mice. Nature 540:438-42
-
(2016)
Nature
, vol.540
, pp. 438-442
-
-
Govero, J.1
Esakky, P.2
Scheaffer, S.M.3
Fernandez, E.4
Drury, A.5
-
41
-
-
85017602432
-
TAM receptors are not required for Zika virus infection in mice
-
Hastings AK, Yockey LJ, Jagger BW, Hwang J, Uraki R, et al. 2017. TAM receptors are not required for Zika virus infection in mice. Cell Rep. 19:558-68
-
(2017)
Cell Rep.
, vol.19
, pp. 558-568
-
-
Hastings, A.K.1
Yockey, L.J.2
Jagger, B.W.3
Hwang, J.4
Uraki, R.5
-
42
-
-
84989808126
-
Zika virus infection in mice causes panuveitis with shedding of virus in tears
-
Miner JJ, Sene A, Richner JM, Smith AM, Santeford A, et al. 2016. Zika virus infection in mice causes panuveitis with shedding of virus in tears. Cell Rep. 16:3208-18
-
(2016)
Cell Rep.
, vol.16
, pp. 3208-3218
-
-
Miner, J.J.1
Sene, A.2
Richner, J.M.3
Smith, A.M.4
Santeford, A.5
-
43
-
-
85008626135
-
Structure of the immature Zika virus at 9 A resolution
-
Prasad VM, Miller AS, Klose T, Sirohi D, Buda G, et al. 2017. Structure of the immature Zika virus at 9 A resolution. Nat. Struct. Mol. Biol. 24:184-86
-
(2017)
Nat. Struct. Mol. Biol.
, vol.24
, pp. 184-186
-
-
Prasad, V.M.1
Miller, A.S.2
Klose, T.3
Sirohi, D.4
Buda, G.5
-
44
-
-
77649220056
-
Immature dengue virus: A veiled pathogen?
-
Rodenhuis-Zybert IA, van der Schaar HM, da Silva Voorham JM, van der Ende-Metselaar H, Lei HY, et al. 2010. Immature dengue virus: a veiled pathogen? PLOS Pathog. 6:e1000718
-
(2010)
PLOS Pathog.
, vol.6
, pp. e1000718
-
-
Rodenhuis-Zybert, I.A.1
Van Der Schaar, H.M.2
Da Silva, V.J.M.3
Van Der Ende-Metselaar, H.4
Lei, H.Y.5
-
45
-
-
0026072426
-
Demonstration of yellow fever and dengue antigens in formalin-fixed paraffin-embedded human liver by immunohistochemical analysis
-
Hall WC, Crowell TP, Watts DM, Barros VL, Kruger H, et al. 1991. Demonstration of yellow fever and dengue antigens in formalin-fixed paraffin-embedded human liver by immunohistochemical analysis. Am. J. Trop. Med. Hyg. 45:408-17
-
(1991)
Am. J. Trop. Med. Hyg.
, vol.45
, pp. 408-417
-
-
Hall, W.C.1
Crowell, T.P.2
Watts, D.M.3
Barros, V.L.4
Kruger, H.5
-
46
-
-
0030438592
-
Immunohistochemical characterization of a new monoclonal antibody reactive with dengue virus-infected cells in frozen tissue using immunoperoxidase technique
-
Bhoopat L, Bhamarapravati N, Attasiri C, Yoksarn S, Chaiwun B, et al. 1996. Immunohistochemical characterization of a new monoclonal antibody reactive with dengue virus-infected cells in frozen tissue using immunoperoxidase technique. Asian Pac. J. Allergy Immunol. 14:107-13
-
(1996)
Asian Pac. J. Allergy Immunol.
, vol.14
, pp. 107-113
-
-
Bhoopat, L.1
Bhamarapravati, N.2
Attasiri, C.3
Yoksarn, S.4
Chaiwun, B.5
-
47
-
-
2142806767
-
Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization
-
Jessie K, FongMY, Devi S, Lam SK, Wong KT. 2004. Localization of dengue virus in naturally infected human tissues, by immunohistochemistry and in situ hybridization. J. Infect. Dis. 189:1411-18
-
(2004)
J. Infect. Dis.
, vol.189
, pp. 1411-1418
-
-
Jessie, K.1
Fong, M.Y.2
Devi, S.3
Lam, S.K.4
Wong, K.T.5
-
48
-
-
62949093951
-
Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining
-
Balsitis SJ, Coloma J, Castro G, Alava A, Flores D, et al. 2009. Tropism of dengue virus in mice and humans defined by viral nonstructural protein 3-specific immunostaining. Am. J. Trop. Med. Hyg. 80:416-24
-
(2009)
Am. J. Trop. Med. Hyg.
, vol.80
, pp. 416-424
-
-
Balsitis, S.J.1
Coloma, J.2
Castro, G.3
Alava, A.4
Flores, D.5
-
49
-
-
0032888081
-
Report of a fatal case of dengue infection with hepatitis: Demonstration of dengue antigens in hepatocytes and liver apoptosis
-
Couvelard A, Marianneau P, Bedel C, Drouet MT, Vachon F, et al. 1999. Report of a fatal case of dengue infection with hepatitis: demonstration of dengue antigens in hepatocytes and liver apoptosis. Hum. Pathol. 30:1106-10
-
(1999)
Hum. Pathol.
, vol.30
, pp. 1106-1110
-
-
Couvelard, A.1
Marianneau, P.2
Bedel, C.3
Drouet, M.T.4
Vachon, F.5
-
50
-
-
0035115328
-
Liver histopathology and biological correlates in five cases of fatal dengue fever in Vietnamese children
-
Huerre MR, Lan NT,Marianneau P, HueNB, Khun H, et al. 2001. Liver histopathology and biological correlates in five cases of fatal dengue fever in Vietnamese children. Virchows Arch. 438:107-15
-
(2001)
Virchows Arch.
, vol.438
, pp. 107-115
-
-
Huerre, M.R.1
Lan, N.T.2
Marianneau, P.3
Hue, N.B.4
Khun, H.5
-
51
-
-
0031858437
-
Dengue virus in the brain of a fatal case of hemorrhagic dengue fever
-
Ramos C, Sanchez G, Pando RH, Baquera J, Hernandez D, et al. 1998. Dengue virus in the brain of a fatal case of hemorrhagic dengue fever. J. Neurovirol. 4:465-68
-
(1998)
J. Neurovirol.
, vol.4
, pp. 465-468
-
-
Ramos, C.1
Sanchez, G.2
Pando, R.H.3
Baquera, J.4
Hernandez, D.5
-
52
-
-
44649085672
-
Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever
-
Durbin AP, VargasMJ, Wanionek K, Hammond SN, Gordon A, et al. 2008. Phenotyping of peripheral blood mononuclear cells during acute dengue illness demonstrates infection and increased activation of monocytes in severe cases compared to classic dengue fever. Virology 376:429-35
-
(2008)
Virology
, vol.376
, pp. 429-435
-
-
Durbin, A.P.1
Vargas, M.J.2
Wanionek, K.3
Hammond, S.N.4
Gordon, A.5
-
53
-
-
0033914368
-
Human skin Langerhans cells are targets of dengue virus infection
-
Wu SJ, Grouard-Vogel G, Sun W, Mascola JR, Brachtel E, et al. 2000. Human skin Langerhans cells are targets of dengue virus infection. Nat. Med. 6:816-20
-
(2000)
Nat. Med.
, vol.6
, pp. 816-820
-
-
Wu, S.J.1
Grouard-Vogel, G.2
Sun, W.3
Mascola, J.R.4
Brachtel, E.5
-
54
-
-
84919482527
-
Selective susceptibility of human skin antigen presenting cells to productive dengue virus infection
-
Cerny D, Haniffa M, Shin A, Bigliardi P, Tan BK, et al. 2014. Selective susceptibility of human skin antigen presenting cells to productive dengue virus infection. PLOS Pathog. 10:e1004548
-
(2014)
PLOS Pathog.
, vol.10
, pp. e1004548
-
-
Cerny, D.1
Haniffa, M.2
Shin, A.3
Bigliardi, P.4
Tan, B.K.5
-
55
-
-
37049009945
-
Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro
-
Blackley S, Kou Z, Chen H, Quinn M, Rose RC, et al. 2007. Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro. J. Virol. 81:13325-34
-
(2007)
J. Virol.
, vol.81
, pp. 13325-13334
-
-
Blackley, S.1
Kou, Z.2
Chen, H.3
Quinn, M.4
Rose, R.C.5
-
56
-
-
84919470447
-
Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication
-
Schmid MA, Harris E. 2014. Monocyte recruitment to the dermis and differentiation to dendritic cells increases the targets for dengue virus replication. PLOS Pathog. 10:e1004541
-
(2014)
PLOS Pathog.
, vol.10
, pp. e1004541
-
-
Schmid, M.A.1
Harris, E.2
-
57
-
-
84869129689
-
Trafficking and replication patterns reveal splenic macrophages as major targets of dengue virus inmice
-
Prestwood TR,May MM, Plummer EM, Morar MM, Yauch LE, Shresta S. 2012. Trafficking and replication patterns reveal splenic macrophages as major targets of dengue virus inmice. J. Virol. 86:12138-47
-
(2012)
J. Virol.
, vol.86
, pp. 12138-12147
-
-
Prestwood, T.R.1
May, M.M.2
Plummer, E.M.3
Morar, M.M.4
Yauch, L.E.5
Shresta, S.6
-
58
-
-
76249103868
-
Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease
-
Zellweger RM, Prestwood TR, Shresta S. 2010. Enhanced infection of liver sinusoidal endothelial cells in a mouse model of antibody-induced severe dengue disease. Cell Host Microbe 7:128-39
-
(2010)
Cell Host Microbe
, vol.7
, pp. 128-139
-
-
Zellweger, R.M.1
Prestwood, T.R.2
Shresta, S.3
-
59
-
-
84986628156
-
Miscarriage associated with Zika virus infection
-
van der Eijk AA, van Genderen PJ, Verdijk RM, Reusken CB, M ogling R, et al. 2016. Miscarriage associated with Zika virus infection. N. Engl. J. Med. 375:1002-4
-
(2016)
N. Engl. J. Med.
, vol.375
, pp. 1002-1004
-
-
Van Der Eijk, A.A.1
Van Genderen, P.J.2
Verdijk, R.M.3
Reusken, C.B.4
Ogling, R.M.5
-
60
-
-
85008388707
-
Placental pathology of Zika virus: Viral infection of the placenta induces villous stromal macrophage (Hofbauer cell) proliferation and hyperplasia
-
Rosenberg AZ, Yu W, Hill DA, Reyes CA, Schwartz DA. 2017. Placental pathology of Zika virus: Viral infection of the placenta induces villous stromal macrophage (Hofbauer cell) proliferation and hyperplasia. Arch. Pathol. Lab. Med. 141:43-48
-
(2017)
Arch. Pathol. Lab. Med.
, vol.141
, pp. 43-48
-
-
Rosenberg, A.Z.1
Yu, W.2
Hill, D.A.3
Reyes, C.A.4
Schwartz, D.A.5
-
61
-
-
85024370672
-
Viral infection, proliferation, and hyperplasia of Hofbauer cells and absence of inflammation characterize the placental pathology of fetuses with congenital Zika virus infection
-
Schwartz DA. 2017. Viral infection, proliferation, and hyperplasia of Hofbauer cells and absence of inflammation characterize the placental pathology of fetuses with congenital Zika virus infection. Arch. Gynecol. Obstet. 295:1361-68
-
(2017)
Arch. Gynecol. Obstet.
, vol.295
, pp. 1361-1368
-
-
Schwartz, D.A.1
-
62
-
-
85013301420
-
Zika virus RNA replication and persistence in brain and placental tissue
-
Bhatnagar J, Rabeneck DB, Martines RB, Reagan-Steiner S, Ermias Y, et al. 2017. Zika virus RNA replication and persistence in brain and placental tissue. Emerg. Infect. Dis. 23:405-14
-
(2017)
Emerg. Infect. Dis.
, vol.23
, pp. 405-414
-
-
Bhatnagar, J.1
Rabeneck, D.B.2
Martines, R.B.3
Reagan-Steiner, S.4
Ermias, Y.5
-
63
-
-
85011891106
-
Zika virus pathogenesis and tissue tropism
-
Miner JJ, Diamond MS. 2017. Zika virus pathogenesis and tissue tropism. Cell Host Microbe 21:134-42
-
(2017)
Cell Host Microbe
, vol.21
, pp. 134-142
-
-
Miner, J.J.1
Diamond, M.S.2
-
64
-
-
85006081766
-
Zika virus cell tropism in the developing human brain and inhibition by azithromycin
-
Retallack H, Di Lullo E, Arias C, Knopp KA, Laurie MT, et al. 2016. Zika virus cell tropism in the developing human brain and inhibition by azithromycin. PNAS 113:14408-13
-
(2016)
PNAS
, vol.113
, pp. 14408-14413
-
-
Retallack, H.1
Di Lullo, E.2
Arias, C.3
Knopp, K.A.4
Laurie, M.T.5
-
65
-
-
85010931698
-
Primary human placental trophoblasts are permissive for Zika virus (ZIKV) replication
-
Aagaard KM, Lahon A, Suter MA, Arya RP, Seferovic MD, et al. 2017. Primary human placental trophoblasts are permissive for Zika virus (ZIKV) replication. Sci. Rep. 7:41389
-
(2017)
Sci. Rep.
, vol.7
, pp. 41389
-
-
Aagaard, K.M.1
Lahon, A.2
Suter, M.A.3
Arya, R.P.4
Seferovic, M.D.5
-
66
-
-
84991629028
-
Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission
-
Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D,Wang C, et al. 2016. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell HostMicrobe 20:155-66
-
(2016)
Cell HostMicrobe
, vol.20
, pp. 155-166
-
-
Tabata, T.1
Petitt, M.2
Puerta-Guardo, H.3
Michlmayr, D.4
Wang, C.5
-
67
-
-
84992524305
-
Infection of human uterine fibroblasts by Zika virus in vitro: Implications for viral transmission in women
-
Chen JC,Wang Z, Huang H, Weitz SH, Wang A, et al. 2016. Infection of human uterine fibroblasts by Zika virus in vitro: implications for viral transmission in women. Int. J. Infect. Dis. 51:139-40
-
(2016)
Int. J. Infect. Dis.
, vol.51
, pp. 139-140
-
-
Chen, J.C.1
Wang, Z.2
Huang, H.3
Weitz, S.H.4
Wang, A.5
-
68
-
-
85016509785
-
Determination of the cell permissiveness spectrum, mode of RNA replication, and RNA-protein interaction of Zika virus
-
HouW, Armstrong N, Obwolo LA, Thomas M, Pang X, et al. 2017. Determination of the cell permissiveness spectrum, mode of RNA replication, and RNA-protein interaction of Zika virus. BMC Infect. Dis. 17:239
-
(2017)
BMC Infect. Dis.
, vol.17
, pp. 239
-
-
Hou, W.1
Armstrong, N.2
Obwolo, L.A.3
Thomas, M.4
Pang, X.5
-
69
-
-
84999027744
-
Zika virus epidemic in Brazil: I Fatal disease in adults; Clinical and laboratorial aspects
-
Azevedo RS, Araujo MT, Martins Filho AJ, Oliveira CS, Nunes BT, et al. 2016. Zika virus epidemic in Brazil: I. Fatal disease in adults; clinical and laboratorial aspects. J. Clin. Virol. 85:56-64
-
(2016)
J. Clin. Virol.
, vol.85
, pp. 56-64
-
-
Azevedo, R.S.1
Araujo, M.T.2
Martins Filho, A.J.3
Oliveira, C.S.4
Nunes, B.T.5
-
70
-
-
84965104185
-
Zika virus damages the human placental barrier and presents marked fetal neurotropism
-
Noronha L, ZanlucaC,AzevedoML, LuzKG, Santos CN. 2016. Zika virus damages the human placental barrier and presents marked fetal neurotropism. Mem. Inst. Oswaldo Cruz 111:287-93
-
(2016)
Mem. Inst. Oswaldo Cruz
, vol.111
, pp. 287-293
-
-
Noronha, L.1
Zanluca, C.2
Azevedo, M.L.3
Luz, K.G.4
Santos, C.N.5
-
71
-
-
84978525616
-
Pathology of congenital Zika syndrome in Brazil: A case series
-
Martines RB, Bhatnagar J, de Oliveira Ramos AM, Davi HP, Iglezias SD, et al. 2016. Pathology of congenital Zika syndrome in Brazil: a case series. Lancet 388:898-904
-
(2016)
Lancet
, vol.388
, pp. 898-904
-
-
Martines, R.B.1
Bhatnagar, J.2
De Oliveira, R.A.M.3
Davi, H.P.4
Iglezias, S.D.5
-
72
-
-
84992036157
-
ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy
-
El Costa H, Gouilly J, Mansuy JM, Chen Q, Levy C, et al. 2016. ZIKA virus reveals broad tissue and cell tropism during the first trimester of pregnancy. Sci. Rep. 6:35296
-
(2016)
Sci. Rep.
, vol.6
, pp. 35296
-
-
El Costa, H.1
Gouilly, J.2
Mansuy, J.M.3
Chen, Q.4
Levy, C.5
-
73
-
-
84967328422
-
Zika virus infects human cortical neural progenitors and attenuates their growth
-
Tang H, Hammack C, Ogden SC,Wen Z, Qian X, et al. 2016. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 18:587-90
-
(2016)
Cell Stem Cell
, vol.18
, pp. 587-590
-
-
Tang, H.1
Hammack, C.2
Ogden, S.C.3
Wen, Z.4
Qian, X.5
-
74
-
-
85136186067
-
Zika virus productively infects primary human placenta-specific macrophages
-
Jurado KA, Simoni MK, Tang Z, Uraki R, Hwang J, et al. 2016. Zika virus productively infects primary human placenta-specific macrophages. JCI Insight 1:e88461
-
(2016)
JCI Insight
, vol.1
, pp. e88461
-
-
Jurado, K.A.1
Simoni, M.K.2
Tang, Z.3
Uraki, R.4
Hwang, J.5
-
75
-
-
84969974909
-
Zika virus infects human placental macrophages
-
Quicke KM, Bowen JR, Johnson EL, McDonald CE, Ma H, et al. 2016. Zika virus infects human placental macrophages. Cell Host Microbe 20:83-90
-
(2016)
Cell Host Microbe
, vol.20
, pp. 83-90
-
-
Quicke, K.M.1
Bowen, J.R.2
Johnson, E.L.3
McDonald, C.E.4
Ma, H.5
-
76
-
-
85027485822
-
Zika virus infection of the human glomerular cells: Implications for viral reservoirs and renal pathogenesis
-
Alcendor DJ. 2017. Zika virus infection of the human glomerular cells: implications for viral reservoirs and renal pathogenesis. J. Infect. Dis. 216:162-71
-
(2017)
J. Infect. Dis.
, vol.216
, pp. 162-171
-
-
Alcendor, D.J.1
-
77
-
-
85014880123
-
Human endometrial stromal cells are highly permissive to productive infection by Zika virus
-
Pagani I, Ghezzi S, Ulisse A, Rubio A, Turrini F, et al. 2017. Human endometrial stromal cells are highly permissive to productive infection by Zika virus. Sci. Rep. 7:44286
-
(2017)
Sci. Rep.
, vol.7
, pp. 44286
-
-
Pagani, I.1
Ghezzi, S.2
Ulisse, A.3
Rubio, A.4
Turrini, F.5
-
78
-
-
85014399432
-
Zika virus infection of cellular components of the blood-retinal barriers: Implications for viral associated congenital ocular disease
-
Roach T, Alcendor DJ. 2017. Zika virus infection of cellular components of the blood-retinal barriers: implications for viral associated congenital ocular disease. J. Neuroinflamm. 14:43
-
(2017)
J. Neuroinflamm.
, vol.14
, pp. 43
-
-
Roach, T.1
Alcendor, D.J.2
-
79
-
-
84938919218
-
Biology of Zika virus infection in human skin cells
-
Hamel R, Dejarnac O,Wichit S, Ekchariyawat P, Neyret A, et al. 2015. Biology of Zika virus infection in human skin cells. J. Virol. 89:8880-96
-
(2015)
J. Virol.
, vol.89
, pp. 8880-8896
-
-
Hamel, R.1
Dejarnac, O.2
Wichit, S.3
Ekchariyawat, P.4
Neyret, A.5
-
80
-
-
84991493912
-
AXL-mediated productive infection of human endothelial cells by Zika virus
-
Liu S, DeLalio LJ, Isakson BE, Wang TT. 2016. AXL-mediated productive infection of human endothelial cells by Zika virus. Circ. Res. 119:1183-89
-
(2016)
Circ. Res.
, vol.119
, pp. 1183-1189
-
-
Liu, S.1
DeLalio, L.J.2
Isakson, B.E.3
Wang, T.T.4
-
81
-
-
85020220008
-
Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques
-
Nguyen SM, AntonyKM, DudleyDM,Kohn S, Simmons HA, et al. 2017. Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLOS Pathog. 13:e1006378
-
(2017)
PLOS Pathog.
, vol.13
, pp. e1006378
-
-
Nguyen, S.M.1
Antony, K.M.2
Dudley, D.M.3
Kohn, S.4
Simmons, H.A.5
-
82
-
-
84989926801
-
Zika viral dynamics and shedding in rhesus and cynomolgus macaques
-
Osuna CE, Lim SY, Deleage C, Griffin BD, Stein D, et al. 2016. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat. Med. 22:1448-55
-
(2016)
Nat. Med.
, vol.22
, pp. 1448-1455
-
-
Osuna, C.E.1
Lim, S.Y.2
Deleage, C.3
Griffin, B.D.4
Stein, D.5
-
83
-
-
85016472486
-
Zika virus infection of rhesus macaques leads to viral persistence in multiple tissues
-
Hirsch AJ, Smith JL, Haese NN, Broeckel RM, Parkins CJ, et al. 2017. Zika virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLOS Pathog. 13:e1006219
-
(2017)
PLOS Pathog.
, vol.13
, pp. e1006219
-
-
Hirsch, A.J.1
Smith, J.L.2
Haese, N.N.3
Broeckel, R.M.4
Parkins, C.J.5
-
84
-
-
85018158931
-
Zika virus persistence in the central nervous system and lymph nodes of rhesus monkeys
-
e14
-
AidM, Abbink P, Larocca RA, BoydM,Nityanandam R, et al. 2017. Zika virus persistence in the central nervous system and lymph nodes of rhesus monkeys. Cell 169:610-20.e14
-
(2017)
Cell
, vol.169
, pp. 610-620
-
-
Aid, M.1
Abbink, P.2
Larocca, R.A.3
Boyd, M.4
Nityanandam, R.5
-
85
-
-
84995609058
-
Zika virus infects neural progenitors in the adult mouse brain and alters proliferation
-
Li H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N, et al. 2016. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 19:593-98
-
(2016)
Cell Stem Cell
, vol.19
, pp. 593-598
-
-
Li, H.1
Saucedo-Cuevas, L.2
Regla-Nava, J.A.3
Chai, G.4
Sheets, N.5
-
86
-
-
85012849744
-
Comparative analysis between flaviviruses reveals specific neural stem cell tropism for Zika virus in the mouse developing neocortex
-
Brault JB,KhouC,Basset J,Coquand L, FraisierV, et al. 2016. Comparative analysis between flaviviruses reveals specific neural stem cell tropism for Zika virus in the mouse developing neocortex. EBioMedicine 10:71-76
-
(2016)
EBioMedicine
, vol.10
, pp. 71-76
-
-
Brault, J.B.1
Khou, C.2
Basset, J.3
Coquand, L.4
Fraisier, V.5
-
87
-
-
85120347413
-
Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes
-
Singh PK, Guest JM, KanwarM, Boss J,Gao N, et al. 2017. Zika virus infects cells lining the blood-retinal barrier and causes chorioretinal atrophy in mouse eyes. JCI Insight 2:e92340
-
(2017)
JCI Insight
, vol.2
, pp. e92340
-
-
Singh, P.K.1
Guest, J.M.2
Kanwar, M.3
Boss, J.4
Gao, N.5
-
88
-
-
85023645272
-
Zika virus causes testicular atrophy
-
UrakiR, Hwang J, Jurado KA,Householder S, Yockey LJ, et al. 2017. Zika virus causes testicular atrophy. Sci. Adv. 3:e1602899
-
(2017)
Sci. Adv.
, vol.3
, pp. e1602899
-
-
Uraki, R.1
Hwang, J.2
Jurado, K.A.3
Householder, S.4
Yockey, L.J.5
-
89
-
-
85006802636
-
A mouse model of Zika virus sexual transmission and vaginal viral replication
-
Tang WW, Young MP, Mamidi A, Regla-Nava JA, Kim K, Shresta S. 2016. A mouse model of Zika virus sexual transmission and vaginal viral replication. Cell Rep. 17:3091-98
-
(2016)
Cell Rep.
, vol.17
, pp. 3091-3098
-
-
Tang, W.W.1
Young, M.P.2
Mamidi, A.3
Regla-Nava, J.A.4
Kim, K.5
Shresta, S.6
-
90
-
-
84969508592
-
Comparison of test results for Zika virus RNA in urine, serum, and saliva specimens from persons with travel-associated Zika virus disease-Florida, 2016
-
Bingham AM, Cone M, Mock V, Heberlein-Larson L, Stanek D, et al. 2016. Comparison of test results for Zika virus RNA in urine, serum, and saliva specimens from persons with travel-associated Zika virus disease-Florida, 2016. MMWR 65:475-78
-
(2016)
MMWR
, vol.65
, pp. 475-478
-
-
Bingham, A.M.1
Cone, M.2
Mock, V.3
Heberlein-Larson, L.4
Stanek, D.5
-
91
-
-
85029228842
-
Persistence of Zika virus in conjunctival fluid of convalescence patients
-
Tan JJL, Balne PK, Leo YS, Tong L, Ng LFP, Agrawal R. 2017. Persistence of Zika virus in conjunctival fluid of convalescence patients. Sci. Rep. 7:11194
-
(2017)
Sci. Rep.
, vol.7
, pp. 11194
-
-
Tan, J.J.L.1
Balne, P.K.2
Leo, Y.S.3
Tong, L.4
Ng, L.F.P.5
Agrawal, R.6
-
92
-
-
84979870841
-
Uveitis associated with Zika virus infection
-
Furtado JM, Esposito DL, Klein TM, Teixeira-Pinto T, da Fonseca BA. 2016. Uveitis associated with Zika virus infection. New Eng. J. Med. 375:394-96
-
(2016)
New Eng. J. Med.
, vol.375
, pp. 394-396
-
-
Furtado, J.M.1
Esposito, D.L.2
Klein, T.M.3
Teixeira-Pinto, T.4
Da Fonseca, B.A.5
-
93
-
-
85019028020
-
Transmission of Zika virus through breast milk and other breastfeeding-related bodily-fluids: A systematic review
-
Colt S, Garcia-Casal MN, Pena-Rosas JP, Finkelstein JL, Rayco-Solon P, et al. 2017. Transmission of Zika virus through breast milk and other breastfeeding-related bodily-fluids: a systematic review. PLOS Negl. Trop. Dis. 11:e0005528
-
(2017)
PLOS Negl. Trop. Dis.
, vol.11
, pp. e0005528
-
-
Colt, S.1
Garcia-Casal, M.N.2
Pena-Rosas, J.P.3
Finkelstein, J.L.4
Rayco-Solon, P.5
-
94
-
-
0029414784
-
Immune defence in mice lacking type i and/or type II interferon receptors
-
van den Broek MF, Muller U, Huang S, Zinkernagel RM, Aguet M. 1995. Immune defence in mice lacking type I and/or type II interferon receptors. Immunol. Rev. 148:5-18
-
(1995)
Immunol. Rev.
, vol.148
, pp. 5-18
-
-
Van Den Broek, M.F.1
Muller, U.2
Huang, S.3
Zinkernagel, R.M.4
Aguet, M.5
-
95
-
-
85009274995
-
Crosstalk between cytoplasmic RIG-I and STING sensing pathways
-
Zevini A, Olagnier D, Hiscott J. 2017. Crosstalk between cytoplasmic RIG-I and STING sensing pathways. Trends Immunol. 38:194-205
-
(2017)
Trends Immunol.
, vol.38
, pp. 194-205
-
-
Zevini, A.1
Olagnier, D.2
Hiscott, J.3
-
97
-
-
0027466321
-
High levels of interferon alpha in the sera of children with dengue virus infection
-
Kurane I, Innis BL, Nimmannitya S, Nisalak A, Meager A, Ennis FA. 1993. High levels of interferon alpha in the sera of children with dengue virus infection. Am. J. Trop. Med. Hyg. 48:222-29
-
(1993)
Am. J. Trop. Med. Hyg.
, vol.48
, pp. 222-229
-
-
Kurane, I.1
Innis, B.L.2
Nimmannitya, S.3
Nisalak, A.4
Meager, A.5
Ennis, F.A.6
-
98
-
-
78650087190
-
Acute dengue virus 2 infection in Gabonese patients is associated with an early innate immune response, including strong interferon alpha production
-
Becquart P, Wauquier N, Nkoghe D, Ndjoyi-Mbiguino A, Padilla C, et al. 2010. Acute dengue virus 2 infection in Gabonese patients is associated with an early innate immune response, including strong interferon alpha production. BMC Infect. Dis. 10:356
-
(2010)
BMC Infect. Dis.
, vol.10
, pp. 356
-
-
Becquart, P.1
Wauquier, N.2
Nkoghe, D.3
Ndjoyi-Mbiguino, A.4
Padilla, C.5
-
99
-
-
84880769645
-
Sequential waves of gene expression in patients with clinically defined dengue illnesses reveal subtle disease phases and predict disease severity
-
Sun P, Garcia J, Comach G, Vahey MT, Wang Z, et al. 2013. Sequential waves of gene expression in patients with clinically defined dengue illnesses reveal subtle disease phases and predict disease severity. PLOS Negl. Trop. Dis. 7:e2298
-
(2013)
PLOS Negl. Trop. Dis.
, vol.7
, pp. e2298
-
-
Sun, P.1
Garcia, J.2
Comach, G.3
Vahey, M.T.4
Wang, Z.5
-
100
-
-
34047235096
-
Patterns of host genome-wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever
-
Simmons CP, Popper S, Dolocek C, Chau TN, Griffiths M, et al. 2007. Patterns of host genome-wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever. J. Infect. Dis. 195:1097-107
-
(2007)
J. Infect. Dis.
, vol.195
, pp. 1097-1107
-
-
Simmons, C.P.1
Popper, S.2
Dolocek, C.3
Chau, T.N.4
Griffiths, M.5
-
101
-
-
79960890406
-
Characterization of early host responses in adults with dengue disease
-
Tolfvenstam T, Lindblom A, SchreiberMJ, Ling L, Chow A, et al. 2011. Characterization of early host responses in adults with dengue disease. BMC Infect. Dis. 11:209
-
(2011)
BMC Infect. Dis.
, vol.11
, pp. 209
-
-
Tolfvenstam, T.1
Lindblom, A.2
Schreiber, M.J.3
Ling, L.4
Chow, A.5
-
102
-
-
37349052379
-
Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity
-
Loo YM, Fornek J, CrochetN, Bajwa G, Perwitasari O, et al. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82:335-45
-
(2008)
J. Virol.
, vol.82
, pp. 335-345
-
-
Loo, Y.M.1
Fornek, J.2
Crochet, N.3
Bajwa, G.4
Perwitasari, O.5
-
103
-
-
84875542059
-
Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling
-
Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, et al. 2013. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 38:437-49
-
(2013)
Immunity
, vol.38
, pp. 437-449
-
-
Wies, E.1
Wang, M.K.2
Maharaj, N.P.3
Chen, K.4
Zhou, S.5
-
104
-
-
0034101043
-
Modulation of dengue virus infection in human cells by alpha, beta, and gamma interferons
-
DiamondMS, RobertsTG, EdgilD, Lu B, Ernst J, Harris E. 2000. Modulation of dengue virus infection in human cells by alpha, beta, and gamma interferons. J. Virol. 74:4957-66
-
(2000)
J. Virol.
, vol.74
, pp. 4957-4966
-
-
Diamond, M.S.1
Roberts, T.G.2
Edgil, D.3
Lu, B.4
Ernst, J.5
Harris, E.6
-
105
-
-
0035950611
-
Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism
-
Diamond MS, Harris E. 2001. Interferon inhibits dengue virus infection by preventing translation of viral RNA through a PKR-independent mechanism. Virology 289:297-311
-
(2001)
Virology
, vol.289
, pp. 297-311
-
-
Diamond, M.S.1
Harris, E.2
-
106
-
-
84953215262
-
Live cell analysis and mathematical modeling identify determinants of attenuation of dengue virus 2-O-methylation mutant
-
Schmid B, RinasM, Ruggieri A, Acosta EG, Bartenschlager M, et al. 2015. Live cell analysis and mathematical modeling identify determinants of attenuation of dengue virus 2-O-methylation mutant. PLOS Pathog. 11:e1005345
-
(2015)
PLOS Pathog.
, vol.11
, pp. e1005345
-
-
Schmid, B.1
Rinas, M.2
Ruggieri, A.3
Acosta, E.G.4
Bartenschlager, M.5
-
107
-
-
77954983994
-
Identification of five interferon-induced cellular proteins that inhibitWest Nile virus and dengue virus infections
-
Jiang D, Weidner JM, Qing M, Pan XB, Guo H, et al. 2010. Identification of five interferon-induced cellular proteins that inhibitWest Nile virus and dengue virus infections. J. Virol. 84:8332-41
-
(2010)
J. Virol.
, vol.84
, pp. 8332-8341
-
-
Jiang, D.1
Weidner, J.M.2
Qing, M.3
Pan, X.B.4
Guo, H.5
-
108
-
-
84876848344
-
Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin
-
Helbig KJ, Carr JM, Calvert JK, Wati S, Clarke JN, et al. 2013. Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin. PLOS Negl. Trop. Dis. 7:e2178
-
(2013)
PLOS Negl. Trop. Dis.
, vol.7
, pp. e2178
-
-
Helbig, K.J.1
Carr, J.M.2
Calvert, J.K.3
Wati, S.4
Clarke, J.N.5
-
109
-
-
72549116887
-
The IFITM proteins mediate cellular resistance to influenza A H1N1 virus,West Nile virus, and dengue virus
-
Brass AL, Huang IC, Benita Y, John SP, KrishnanMN, et al. 2009. The IFITM proteins mediate cellular resistance to influenza A H1N1 virus,West Nile virus, and dengue virus. Cell 139:1243-54
-
(2009)
Cell
, vol.139
, pp. 1243-1254
-
-
Brass, A.L.1
Huang, I.C.2
Benita, Y.3
John, S.P.4
Krishnan, M.N.5
-
110
-
-
84866002833
-
Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro
-
Schoggins JW, Dorner M, Feulner M, Imanaka N, Murphy MY, et al. 2012. Dengue reporter viruses reveal viral dynamics in interferon receptor-deficient mice and sensitivity to interferon effectors in vitro. PNAS 109:14610-15
-
(2012)
PNAS
, vol.109
, pp. 14610-14615
-
-
Schoggins, J.W.1
Dorner, M.2
Feulner, M.3
Imanaka, N.4
Murphy, M.Y.5
-
111
-
-
84956778994
-
Characterization of RyDEN (C19orf66) as an interferon-stimulated cellular inhibitor against dengue virus replication
-
Suzuki Y, Chin WX, Han Q, Ichiyama K, Lee CH, et al. 2016. Characterization of RyDEN (C19orf66) as an interferon-stimulated cellular inhibitor against dengue virus replication. PLOS Pathog. 12:e1005357
-
(2016)
PLOS Pathog.
, vol.12
, pp. e1005357
-
-
Suzuki, Y.1
Chin, W.X.2
Han, Q.3
Ichiyama, K.4
Lee, C.H.5
-
112
-
-
85013946224
-
IRAV (FLJ11286), an interferonstimulated gene with antiviral activity against dengue virus, interactswithMOV10
-
Balinsky CA, Schmeisser H, Wells AI, Ganesan S, Jin T, et al. 2017. IRAV (FLJ11286), an interferonstimulated gene with antiviral activity against dengue virus, interactswithMOV10. J. Virol. 91:e01606-16
-
(2017)
J. Virol.
, vol.91
, pp. e01606-e01616
-
-
Balinsky, C.A.1
Schmeisser, H.2
Wells, A.I.3
Ganesan, S.4
Jin, T.5
-
113
-
-
76249133498
-
Distinct antiviral roles for human 2,5-oligoadenylate synthetase family members against dengue virus infection
-
Lin RJ, Yu HP, Chang BL, Tang WC, Liao CL, Lin YL. 2009. Distinct antiviral roles for human 2,5-oligoadenylate synthetase family members against dengue virus infection. J. Immunol. 183:8035-43
-
(2009)
J. Immunol.
, vol.183
, pp. 8035-8043
-
-
Lin, R.J.1
Yu, H.P.2
Chang, B.L.3
Tang, W.C.4
Liao, C.L.5
Lin, Y.L.6
-
114
-
-
84971621989
-
The IFITMs inhibit Zika virus replication
-
Savidis G, Perreira JM, Portmann JM, Meraner P, Guo Z, et al. 2016. The IFITMs inhibit Zika virus replication. Cell Rep. 15:2323-30
-
(2016)
Cell Rep.
, vol.15
, pp. 2323-2330
-
-
Savidis, G.1
Perreira, J.M.2
Portmann, J.M.3
Meraner, P.4
Guo, Z.5
-
115
-
-
85021942862
-
ZMPSTE24 defends against influenza and other pathogenic viruses
-
Fu B, Wang L, Li S, Dorf ME. 2017. ZMPSTE24 defends against influenza and other pathogenic viruses. J. Exp. Med. 214:919-29
-
(2017)
J. Exp. Med.
, vol.214
, pp. 919-929
-
-
Fu, B.1
Wang, L.2
Li, S.3
Dorf, M.E.4
-
116
-
-
1542317760
-
Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T-and B-celldependent immunity are less critical
-
Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E. 2004. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T-and B-celldependent immunity are less critical. J. Virol. 78:2701-10
-
(2004)
J. Virol.
, vol.78
, pp. 2701-2710
-
-
Shresta, S.1
Kyle, J.L.2
Snider, H.M.3
Basavapatna, M.4
Beatty, P.R.5
Harris, E.6
-
117
-
-
0032889018
-
New mouse model for dengue virus vaccine testing
-
Johnson AJ, Roehrig JT. 1999. New mouse model for dengue virus vaccine testing. J. Virol. 73:783-86
-
(1999)
J. Virol.
, vol.73
, pp. 783-786
-
-
Johnson, A.J.1
Roehrig, J.T.2
-
118
-
-
84983748570
-
Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection
-
e4
-
Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL, et al. 2016. Vaginal exposure to Zika virus during pregnancy leads to fetal brain infection. Cell 166:1247-56.e4
-
(2016)
Cell
, vol.166
, pp. 1247-1256
-
-
Yockey, L.J.1
Varela, L.2
Rakib, T.3
Khoury-Hanold, W.4
Fink, S.L.5
-
120
-
-
67749108442
-
Cardif-mediated signaling controls the initial innate response to dengue virus in vivo
-
Perry ST, Prestwood TR, Lada SM, Benedict CA, Shresta S. 2009. Cardif-mediated signaling controls the initial innate response to dengue virus in vivo. J. Virol. 83:8276-81
-
(2009)
J. Virol.
, vol.83
, pp. 8276-8281
-
-
Perry, S.T.1
Prestwood, T.R.2
Lada, S.M.3
Benedict, C.A.4
Shresta, S.5
-
121
-
-
84885463949
-
The roles of IRF-3 and IRF-7 in innate antiviral immunity against dengue virus
-
Chen HW, King K, Tu J, Sanchez M, Luster AD, Shresta S. 2013. The roles of IRF-3 and IRF-7 in innate antiviral immunity against dengue virus. J. Immunol. 191:4194-201
-
(2013)
J. Immunol.
, vol.191
, pp. 4194-4201
-
-
Chen, H.W.1
King, K.2
Tu, J.3
Sanchez, M.4
Luster, A.D.5
Shresta, S.6
-
122
-
-
33750813795
-
Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition
-
Wang JP, Liu P, Latz E, Golenbock DT, Finberg RW, Libraty DH. 2006. Flavivirus activation of plasmacytoid dendritic cells delineates key elements of TLR7 signaling beyond endosomal recognition. J. Immunol. 177:7114-21
-
(2006)
J. Immunol.
, vol.177
, pp. 7114-7121
-
-
Wang, J.P.1
Liu, P.2
Latz, E.3
Golenbock, D.T.4
Finberg, R.W.5
Libraty, D.H.6
-
123
-
-
79851492362
-
RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection
-
Nasirudeen AM,Wong HH, Thien P, Xu S, Lam KP, Liu DX. 2011. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLOS Negl. Trop. Dis. 5:e926
-
(2011)
PLOS Negl. Trop. Dis.
, vol.5
, pp. e926
-
-
Nasirudeen, A.M.1
Wong, H.H.2
Thien, P.3
Xu, S.4
Lam, K.P.5
Liu, D.X.6
-
124
-
-
84875065899
-
IRF-3, IRF-5, and IRF-7 coordinately regulate the type i IFN response in myeloid dendritic cells downstream ofMAVS signaling
-
Lazear HM, Lancaster A, Wilkins C, Suthar MS, Huang A, et al. 2013. IRF-3, IRF-5, and IRF-7 coordinately regulate the type I IFN response in myeloid dendritic cells downstream ofMAVS signaling. PLOS Pathog. 9:e1003118
-
(2013)
PLOS Pathog.
, vol.9
, pp. e1003118
-
-
Lazear, H.M.1
Lancaster, A.2
Wilkins, C.3
Suthar, M.S.4
Huang, A.5
-
125
-
-
84962438993
-
A mouse model of Zika virus pathogenesis
-
Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E, et al. 2016. A mouse model of Zika virus pathogenesis. Cell Host Microbe 19:720-30
-
(2016)
Cell Host Microbe
, vol.19
, pp. 720-730
-
-
Lazear, H.M.1
Govero, J.2
Smith, A.M.3
Platt, D.J.4
Fernandez, E.5
-
126
-
-
80053447769
-
Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8+ T cell immune responses against West Nile virus infection
-
Brien JD, Daffis S, Lazear HM, Cho H, Suthar MS, et al. 2011. Interferon regulatory factor-1 (IRF-1) shapes both innate and CD8+ T cell immune responses against West Nile virus infection. PLOS Pathog. 7:e1002230
-
(2011)
PLOS Pathog.
, vol.7
, pp. e1002230
-
-
Brien, J.D.1
Daffis, S.2
Lazear, H.M.3
Cho, H.4
Suthar, M.S.5
-
127
-
-
84869214034
-
Gamma interferon (IFN-γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-α/βreceptor-deficient mice
-
Prestwood TR,Morar MM, Zellweger RM,Miller R,May MM, et al. 2012. Gamma interferon (IFN-γ) receptor restricts systemic dengue virus replication and prevents paralysis in IFN-α/βreceptor-deficient mice. J. Virol. 86:12561-70
-
(2012)
J. Virol.
, vol.86
, pp. 12561-12570
-
-
Prestwood, T.R.1
Morar, M.M.2
Zellweger, R.M.3
Miller, R.4
May, M.M.5
-
128
-
-
84866318086
-
Characterization of a model of lethal dengue virus 2 infection in C57BL/6 mice deficient in the alpha/beta interferon receptor
-
Orozco S, Schmid MA, Parameswaran P, Lachica R, Henn MR, et al. 2012. Characterization of a model of lethal dengue virus 2 infection in C57BL/6 mice deficient in the alpha/beta interferon receptor. J. Gen. Virol. 93:2152-57
-
(2012)
J. Gen. Virol.
, vol.93
, pp. 2152-2157
-
-
Orozco, S.1
Schmid, M.A.2
Parameswaran, P.3
Lachica, R.4
Henn, M.R.5
-
129
-
-
84946593503
-
Defining new therapeutics using a more immunocompetent mouse model of antibody-enhanced dengue virus infection
-
Pinto AK, Brien JD, Lam CY, Johnson S, Chiang C, et al. 2015. Defining new therapeutics using a more immunocompetent mouse model of antibody-enhanced dengue virus infection. mBio 6:e01316-15
-
(2015)
MBio
, vol.6
, pp. e01316-e01415
-
-
Pinto, A.K.1
Brien, J.D.2
Lam, C.Y.3
Johnson, S.4
Chiang, C.5
-
130
-
-
84901981496
-
Type i interferon signals in macrophages and dendritic cells control dengue virus infection: Implications for a new mouse model to test dengue vaccines
-
Zust R, Toh YX, Valdes I, Cerny D, Heinrich J, et al. 2014. Type I interferon signals in macrophages and dendritic cells control dengue virus infection: implications for a new mouse model to test dengue vaccines. J. Virol. 88:7276-85
-
(2014)
J. Virol.
, vol.88
, pp. 7276-7285
-
-
Zust, R.1
Toh, Y.X.2
Valdes, I.3
Cerny, D.4
Heinrich, J.5
-
131
-
-
24744437333
-
Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice
-
Shresta S, Sharar KL, Prigozhin DM, Snider HM, Beatty PR, Harris E. 2005. Critical roles for both STAT1-dependent and STAT1-independent pathways in the control of primary dengue virus infection in mice. J. Immunol. 175:3946-54
-
(2005)
J. Immunol.
, vol.175
, pp. 3946-3954
-
-
Shresta, S.1
Sharar, K.L.2
Prigozhin, D.M.3
Snider, H.M.4
Beatty, P.R.5
Harris, E.6
-
132
-
-
79952237300
-
STAT2 mediates innate immunity to dengue virus in the absence of STAT1 via the type i interferon receptor
-
Perry ST, Buck MD, Lada SM, Schindler C, Shresta S. 2011. STAT2 mediates innate immunity to dengue virus in the absence of STAT1 via the type I interferon receptor. PLOS Pathog. 7:e1001297
-
(2011)
PLOS Pathog.
, vol.7
, pp. e1001297
-
-
Perry, S.T.1
Buck, M.D.2
Lada, S.M.3
Schindler, C.4
Shresta, S.5
-
133
-
-
85016448472
-
A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses
-
Tripathi S, Balasubramaniam VR, Brown JA, Mena I, Grant A, et al. 2017. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLOS Pathog. 13:e1006258
-
(2017)
PLOS Pathog.
, vol.13
, pp. e1006258
-
-
Tripathi, S.1
Balasubramaniam, V.R.2
Brown, J.A.3
Mena, I.4
Grant, A.5
-
134
-
-
84967003811
-
Characterization of a novel murine model to study Zika virus
-
Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA, et al. 2016. Characterization of a novel murine model to study Zika virus. Am. J. Trop. Med. Hyg. 94:1362-69
-
(2016)
Am. J. Trop. Med. Hyg.
, vol.94
, pp. 1362-1369
-
-
Rossi, S.L.1
Tesh, R.B.2
Azar, S.R.3
Muruato, A.E.4
Hanley, K.A.5
-
135
-
-
84971641427
-
A susceptible mouse model for Zika virus infection
-
Dowall SD, Graham VA, Rayner E, Atkinson B, Hall G, et al. 2016. A susceptible mouse model for Zika virus infection. PLOS Negl. Trop. Dis. 10:e0004658
-
(2016)
PLOS Negl. Trop. Dis.
, vol.10
, pp. e0004658
-
-
Dowall, S.D.1
Graham, V.A.2
Rayner, E.3
Atkinson, B.4
Hall, G.5
-
136
-
-
78349248232
-
Mouse STAT2 restricts early dengue virus replication
-
Ashour J, Morrison J, Laurent-Rolle M, Belicha-Villanueva A, Plumlee CR, et al. 2010. Mouse STAT2 restricts early dengue virus replication. Cell Host Microbe 8:410-21
-
(2010)
Cell Host Microbe
, vol.8
, pp. 410-421
-
-
Ashour, J.1
Morrison, J.2
Laurent-Rolle, M.3
Belicha-Villanueva, A.4
Plumlee, C.R.5
-
137
-
-
84896993674
-
Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type i interferon-independent stimulation of the innate antiviral response
-
Olagnier D, Scholte FE, Chiang C, Albulescu IC, Nichols C, et al. 2014. Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response. J. Virol. 88:4180-94
-
(2014)
J. Virol.
, vol.88
, pp. 4180-4194
-
-
Olagnier, D.1
Scholte, F.E.2
Chiang, C.3
Albulescu, I.C.4
Nichols, C.5
-
138
-
-
84962173518
-
Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection
-
Bayer A, Lennemann NJ, Ouyang Y, Bramley JC,Morosky S, et al. 2016. Type III interferons produced by human placental trophoblasts confer protection against Zika virus infection. Cell HostMicrobe 19:705-12
-
(2016)
Cell HostMicrobe
, vol.19
, pp. 705-712
-
-
Bayer, A.1
Lennemann, N.J.2
Ouyang, Y.3
Bramley, J.C.4
Morosky, S.5
-
139
-
-
84904680881
-
Diverse intracellular pathogens activate type III interferon expression from peroxisomes
-
Odendall C, Dixit E, Stavru F, Bierne H, Franz KM, et al. 2014. Diverse intracellular pathogens activate type III interferon expression from peroxisomes. Nat. Immunol. 15:717-26
-
(2014)
Nat. Immunol.
, vol.15
, pp. 717-726
-
-
Odendall, C.1
Dixit, E.2
Stavru, F.3
Bierne, H.4
Franz, K.M.5
-
140
-
-
84908346054
-
Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells
-
Decembre E, Assil S, Hillaire ML, DejnirattisaiW, Mongkolsapaya J, et al. 2014. Sensing of immature particles produced by dengue virus infected cells induces an antiviral response by plasmacytoid dendritic cells. PLOS Pathog. 10:e1004434
-
(2014)
PLOS Pathog.
, vol.10
, pp. e1004434
-
-
Decembre, E.1
Assil, S.2
Hillaire, M.L.3
Dejnirattisai, W.4
Mongkolsapaya, J.5
-
141
-
-
84971557656
-
Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3
-
Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS, et al. 2016. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 19:258-65
-
(2016)
Cell Stem Cell
, vol.19
, pp. 258-265
-
-
Dang, J.1
Tiwari, S.K.2
Lichinchi, G.3
Qin, Y.4
Patil, V.S.5
-
142
-
-
84941254672
-
Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented byNS1 vaccination
-
Beatty PR, Puerta-Guardo H, Killingbeck SS, Glasner DR, Hopkins K, Harris E. 2015. Dengue virus NS1 triggers endothelial permeability and vascular leak that is prevented byNS1 vaccination. Sci. Transl. Med. 7:304ra141
-
(2015)
Sci. Transl. Med.
, vol.7
, pp. 304ra141
-
-
Beatty, P.R.1
Puerta-Guardo, H.2
Killingbeck, S.S.3
Glasner, D.R.4
Hopkins, K.5
Harris, E.6
-
143
-
-
84938796594
-
Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the immunopathogenesis of dengue virus infection
-
Chen J, Ng MM, Chu JJ. 2015. Activation of TLR2 and TLR6 by dengue NS1 protein and its implications in the immunopathogenesis of dengue virus infection. PLOS Pathog. 11:e1005053
-
(2015)
PLOS Pathog.
, vol.11
, pp. e1005053
-
-
Chen, J.1
Ng, M.M.2
Chu, J.J.3
-
144
-
-
84941247956
-
Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity
-
Modhiran N, Watterson D, Muller DA, Panetta AK, Sester DP, et al. 2015. Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity. Sci. Transl.Med. 7:304ra142
-
(2015)
Sci. Transl.Med.
, vol.7
, pp. 304ra142
-
-
Modhiran, N.1
Watterson, D.2
Muller, D.A.3
Panetta, A.K.4
Sester, D.P.5
-
145
-
-
84973446526
-
Zika virus targets human STAT2 to inhibit type i interferon signaling
-
Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L, et al. 2016. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 19:882-90
-
(2016)
Cell Host Microbe
, vol.19
, pp. 882-890
-
-
Grant, A.1
Ponia, S.S.2
Tripathi, S.3
Balasubramaniam, V.4
Miorin, L.5
-
146
-
-
84936935012
-
Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: Dengue virus serotype 1 NS4A is a unique interferonregulating virulence determinant
-
Dalrymple NA, Cimica V, Mackow ER. 2015. Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: Dengue virus serotype 1 NS4A is a unique interferonregulating virulence determinant. mBio 6:e00553-15
-
(2015)
MBio
, vol.6
, pp. e00553-e00615
-
-
Dalrymple, N.A.1
Cimica, V.2
Mackow, E.R.3
-
147
-
-
84982237073
-
Dengue virus subverts host innate immunity by targeting adaptor protein MAVS
-
He Z, Zhu X, Wen W, Yuan J, Hu Y, et al. 2016. Dengue virus subverts host innate immunity by targeting adaptor protein MAVS. J. Virol. 90:7219-30
-
(2016)
J. Virol.
, vol.90
, pp. 7219-7230
-
-
He, Z.1
Zhu, X.2
Wen, W.3
Yuan, J.4
Hu, Y.5
-
148
-
-
84995550705
-
Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses
-
Chatel-Chaix L, Cortese M, Romero-Brey I, Bender S, Neufeldt CJ, et al. 2016. Dengue virus perturbs mitochondrial morphodynamics to dampen innate immune responses. Cell Host Microbe 20:342-56
-
(2016)
Cell Host Microbe
, vol.20
, pp. 342-356
-
-
Chatel-Chaix, L.1
Cortese, M.2
Romero-Brey, I.3
Bender, S.4
Neufeldt, C.J.5
-
149
-
-
84953227308
-
Dengue virus impairs mitochondrial fusion by cleaving mitofusins
-
Yu CY, Liang JJ, Li JK, Lee YL, Chang BL, et al. 2015. Dengue virus impairs mitochondrial fusion by cleaving mitofusins. PLOS Pathog. 11:e1005350
-
(2015)
PLOS Pathog.
, vol.11
, pp. e1005350
-
-
Yu, C.Y.1
Liang, J.J.2
Li, J.K.3
Lee, Y.L.4
Chang, B.L.5
-
150
-
-
84961392938
-
A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity
-
Chan YK, Gack MU. 2016. A phosphomimetic-based mechanism of dengue virus to antagonize innate immunity. Nat. Immunol. 17:523-30
-
(2016)
Nat. Immunol.
, vol.17
, pp. 523-530
-
-
Chan, Y.K.1
Gack, M.U.2
-
151
-
-
84868102239
-
DENV inhibits type i IFN production in infected cells by cleaving human STING
-
Aguirre S, Maestre AM, Pagni S, Patel JR, Savage T, et al. 2012. DENV inhibits type I IFN production in infected cells by cleaving human STING. PLOS Pathog. 8:e1002934
-
(2012)
PLOS Pathog.
, vol.8
, pp. e1002934
-
-
Aguirre, S.1
Maestre, A.M.2
Pagni, S.3
Patel, J.R.4
Savage, T.5
-
152
-
-
84864036246
-
Dengue virus targets the adaptor protein MITA to subvert host innate immunity
-
Yu CY, Chang TH, Liang JJ, Chiang RL, Lee YL, et al. 2012. Dengue virus targets the adaptor protein MITA to subvert host innate immunity. PLOS Pathog. 8:e1002780
-
(2012)
PLOS Pathog.
, vol.8
, pp. e1002780
-
-
Yu, C.Y.1
Chang, T.H.2
Liang, J.J.3
Chiang, R.L.4
Lee, Y.L.5
-
153
-
-
85016277255
-
Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection
-
Aguirre S, Luthra P, Sanchez-Aparicio MT, Maestre AM, Patel J, et al. 2017. Dengue virus NS2B protein targets cGAS for degradation and prevents mitochondrial DNA sensing during infection. Nat. Microbiol. 2:17037
-
(2017)
Nat. Microbiol.
, vol.2
, pp. 17037
-
-
Aguirre, S.1
Luthra, P.2
Sanchez-Aparicio, M.T.3
Maestre, A.M.4
Patel, J.5
-
154
-
-
85017551533
-
Endoplasmic reticulum protein SCAP inhibits dengue virus NS2B3 protease by suppressing its K27-linked polyubiquitylation
-
LiuH, Zhang L, Sun J, ChenW, Li S, et al. 2017. Endoplasmic reticulum protein SCAP inhibits dengue virus NS2B3 protease by suppressing its K27-linked polyubiquitylation. J. Virol. 91:e02234-16
-
(2017)
J. Virol.
, vol.91
, pp. e02234-e02316
-
-
Liu, H.1
Zhang, L.2
Sun, J.3
Chen, W.4
Li, S.5
-
156
-
-
84875994162
-
Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type i interferon signaling
-
Morrison J, Laurent-Rolle M, Maestre AM, Rajsbaum R, Pisanelli G, et al. 2013. Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLOS Pathog. 9:e1003265
-
(2013)
PLOS Pathog.
, vol.9
, pp. e1003265
-
-
Morrison, J.1
Laurent-Rolle, M.2
Maestre, A.M.3
Rajsbaum, R.4
Pisanelli, G.5
-
157
-
-
85014129552
-
Zika virus antagonizes type i interferon responses during infection of human dendritic cells
-
Bowen JR, Quicke KM, Maddur MS, O'Neal JT, McDonald CE, et al. 2017. Zika virus antagonizes type I interferon responses during infection of human dendritic cells. PLOS Pathog. 13:e1006164
-
(2017)
PLOS Pathog.
, vol.13
, pp. e1006164
-
-
Bowen, J.R.1
Quicke, K.M.2
Maddur, M.S.3
O'Neal, J.T.4
McDonald, C.E.5
-
158
-
-
84937706124
-
A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2O-methylated self RNA
-
Schuberth-Wagner C, Ludwig J, Bruder AK, Herzner AM, ZillingerT, et al. 2015. A conserved histidine in the RNA sensor RIG-I controls immune tolerance to N1-2O-methylated self RNA. Immunity 43:41-51
-
(2015)
Immunity
, vol.43
, pp. 41-51
-
-
Schuberth-Wagner, C.1
Ludwig, J.2
Bruder, A.K.3
Herzner, A.M.4
Zillinger, T.5
-
159
-
-
78751637122
-
Ribose 2-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5
-
Zust R, Cervantes-Barragan L, HabjanM,Maier R, Neuman BW, et al. 2011. Ribose 2-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol. 12:137-43
-
(2011)
Nat. Immunol.
, vol.12
, pp. 137-143
-
-
Zust, R.1
Cervantes-Barragan, L.2
Habjan, M.3
Maier, R.4
Neuman, B.W.5
-
160
-
-
78549284909
-
2-O methylation of the viral mRNA cap evades host restriction by IFIT family members
-
Daffis S, Szretter KJ, Schriewer J, Li J, Youn S, et al. 2010. 2-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature 468:452-56
-
(2010)
Nature
, vol.468
, pp. 452-456
-
-
Daffis, S.1
Szretter, K.J.2
Schriewer, J.3
Li, J.4
Youn, S.5
-
161
-
-
84992187973
-
Evasion of early innate immune response by 2-O-methylation of dengue genomic RNA
-
ChangDC, Hoang LT, MohamedNaim AN,DongH, Schreiber MJ, et al. 2016. Evasion of early innate immune response by 2-O-methylation of dengue genomic RNA. Virology 499:259-66
-
(2016)
Virology
, vol.499
, pp. 259-266
-
-
Chang, D.C.1
Hoang, L.T.2
MohamedNaim, A.N.3
Dong, H.4
Schreiber, M.J.5
-
162
-
-
84949844295
-
Flavivirus infection impairs peroxisome biogenesis and early antiviral signaling
-
You J, Hou S, Malik-Soni N, Xu Z, Kumar A, et al. 2015. Flavivirus infection impairs peroxisome biogenesis and early antiviral signaling. J. Virol. 89:12349-61
-
(2015)
J. Virol.
, vol.89
, pp. 12349-12361
-
-
You, J.1
Hou, S.2
Malik-Soni, N.3
Xu, Z.4
Kumar, A.5
-
163
-
-
76949113583
-
Research on dengue duringWorld War II
-
Sabin AB. 1952. Research on dengue duringWorld War II. Am. J. Trop. Med. Hyg. 1:30-50
-
(1952)
Am. J. Trop. Med. Hyg.
, vol.1
, pp. 30-50
-
-
Sabin, A.B.1
-
164
-
-
0034331203
-
Epidemiologic studies on dengue in Santiago de Cuba, 1997
-
discussion 804
-
Guzman MG, Kouri G, Valdes L, Bravo J, Alvarez M, et al. 2000. Epidemiologic studies on dengue in Santiago de Cuba, 1997. Am. J. Epidemiol. 152:793-99; discussion 804
-
(2000)
Am. J. Epidemiol.
, vol.152
, pp. 793-799
-
-
Guzman, M.G.1
Kouri, G.2
Valdes, L.3
Bravo, J.4
Alvarez, M.5
-
165
-
-
85017646438
-
Vaccination strategies against Zika virus
-
Fernandez E, DiamondMS. 2017. Vaccination strategies against Zika virus. Curr. Opin. Virol. 23:59-67
-
(2017)
Curr. Opin. Virol.
, vol.23
, pp. 59-67
-
-
Fernandez, E.1
Diamond, M.S.2
-
166
-
-
85015287311
-
Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue virus cross-reactive CD8+ T cells
-
Wen J, Tang WW, Sheets N, Ellison J, Sette A, et al. 2017. Identification of Zika virus epitopes reveals immunodominant and protective roles for dengue virus cross-reactive CD8+ T cells. Nat. Microbiol. 2:17036
-
(2017)
Nat. Microbiol.
, vol.2
, pp. 17036
-
-
Wen, J.1
Tang, W.W.2
Sheets, N.3
Ellison, J.4
Sette, A.5
-
167
-
-
0024329228
-
Monoclonal antibodies for dengue virus prM glycoprotein protect mice against lethal dengue infection
-
Kaufman BM, Summers PL, Dubois DR, CohenWH, Gentry MK, et al. 1989. Monoclonal antibodies for dengue virus prM glycoprotein protect mice against lethal dengue infection. Am. J. Trop. Med. Hyg. 41:576-80
-
(1989)
Am. J. Trop. Med. Hyg.
, vol.41
, pp. 576-580
-
-
Kaufman, B.M.1
Summers, P.L.2
Dubois, D.R.3
Cohen, W.H.4
Gentry, M.K.5
-
168
-
-
0023135329
-
Monoclonal antibodies against dengue 2 virus E-glycoprotein protect mice against lethal dengue infection
-
Kaufman BM, Summers PL, Dubois DR, Eckels KH. 1987. Monoclonal antibodies against dengue 2 virus E-glycoprotein protect mice against lethal dengue infection. Am. J. Trop. Med. Hyg. 36:427-34
-
(1987)
Am. J. Trop. Med. Hyg.
, vol.36
, pp. 427-434
-
-
Kaufman, B.M.1
Summers, P.L.2
Dubois, D.R.3
Eckels, K.H.4
-
169
-
-
53249134451
-
Antibodies play a greater role than immune cells in heterologous protection against secondary dengue virus infection in a mouse model
-
Kyle JL, Balsitis SJ, Zhang L, Beatty PR, Harris E. 2008. Antibodies play a greater role than immune cells in heterologous protection against secondary dengue virus infection in a mouse model. Virology 380:296-303
-
(2008)
Virology
, vol.380
, pp. 296-303
-
-
Kyle, J.L.1
Balsitis, S.J.2
Zhang, L.3
Beatty, P.R.4
Harris, E.5
-
170
-
-
84255191089
-
The human antibody response to dengue virus infection
-
WahalaWM,SilvaAM. 2011. The human antibody response to dengue virus infection. Viruses 3:2374-95
-
(2011)
Viruses
, vol.3
, pp. 2374-2395
-
-
Wahala, W.M.1
Silva, A.M.2
-
171
-
-
84887184100
-
High-avidity and potently neutralizing cross-reactive human monoclonal antibodies derived from secondary dengue virus infection
-
Tsai WY, Lai CY, Wu YC, Lin HE, Edwards C, et al. 2013. High-avidity and potently neutralizing cross-reactive human monoclonal antibodies derived from secondary dengue virus infection. J. Virol. 87:12562-75
-
(2013)
J. Virol.
, vol.87
, pp. 12562-12575
-
-
Tsai, W.Y.1
Lai, C.Y.2
Wu, Y.C.3
Lin, H.E.4
Edwards, C.5
-
172
-
-
84931081889
-
Complexity of neutralizing antibodies against multiple dengue virus serotypes after heterotypic immunization and secondary infection revealed by in-depth analysis of cross-reactive antibodies
-
Tsai WY, Durbin A, Tsai JJ, Hsieh SC, Whitehead S,WangWK. 2015. Complexity of neutralizing antibodies against multiple dengue virus serotypes after heterotypic immunization and secondary infection revealed by in-depth analysis of cross-reactive antibodies. J. Virol. 89:7348-62
-
(2015)
J. Virol.
, vol.89
, pp. 7348-7362
-
-
Tsai, W.Y.1
Durbin, A.2
Tsai, J.J.3
Hsieh, S.C.4
Whitehead, S.5
Wang, W.K.6
-
173
-
-
84978153824
-
Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus
-
Priyamvada L, Quicke KM, Hudson WH, Onlamoon N, Sewatanon J, et al. 2016. Human antibody responses after dengue virus infection are highly cross-reactive to Zika virus. PNAS 113:7852-57
-
(2016)
PNAS
, vol.113
, pp. 7852-7857
-
-
Priyamvada, L.1
Quicke, K.M.2
Hudson, W.H.3
Onlamoon, N.4
Sewatanon, J.5
-
174
-
-
84978910758
-
Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection
-
Stettler K, Beltramello M, Espinosa DA, Graham V, Cassotta A, et al. 2016. Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection. Science 353:823-26
-
(2016)
Science
, vol.353
, pp. 823-826
-
-
Stettler, K.1
Beltramello, M.2
Espinosa, D.A.3
Graham, V.4
Cassotta, A.5
-
175
-
-
84986564690
-
Dengue virus envelope dimer epitope monoclonal antibodies isolated from dengue patients are protective against Zika virus
-
Swanstrom JA, Plante JA, Plante KS, Young EF, McGowan E, et al. 2016. Dengue virus envelope dimer epitope monoclonal antibodies isolated from dengue patients are protective against Zika virus. mBio 7:e01123-16
-
(2016)
MBio
, vol.7
, pp. e01123-e01216
-
-
Swanstrom, J.A.1
Plante, J.A.2
Plante, K.S.3
Young, E.F.4
McGowan, E.5
-
176
-
-
84976292755
-
Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus
-
Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G, et al. 2016. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with Zika virus. Nat. Immunol. 17:1102-8
-
(2016)
Nat. Immunol.
, vol.17
, pp. 1102-1108
-
-
Dejnirattisai, W.1
Supasa, P.2
Wongwiwat, W.3
Rouvinski, A.4
Barba-Spaeth, G.5
-
177
-
-
85029660448
-
Humoral cross-reactivity between Zika and dengue viruses: Implications for protection and pathology
-
Priyamvada L, Hudson W, Ahmed R, Wrammert J. 2017. Humoral cross-reactivity between Zika and dengue viruses: implications for protection and pathology. Emerg. Microbes Infect. 6:e33
-
(2017)
Emerg. Microbes Infect.
, vol.6
, pp. e33
-
-
Priyamvada, L.1
Hudson, W.2
Ahmed, R.3
Wrammert, J.4
-
178
-
-
36348963709
-
Type-and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes
-
Sukupolvi-Petty S, Austin SK, Purtha WE, Oliphant T, Nybakken GE, et al. 2007. Type-and subcomplex-specific neutralizing antibodies against domain III of dengue virus type 2 envelope protein recognize adjacent epitopes. J. Virol. 81:12816-26
-
(2007)
J. Virol.
, vol.81
, pp. 12816-12826
-
-
Sukupolvi-Petty, S.1
Austin, S.K.2
Purtha, W.E.3
Oliphant, T.4
Nybakken, G.E.5
-
179
-
-
77954039828
-
The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type
-
Shrestha B, Brien JD, Sukupolvi-Petty S, Austin SK, Edeling MA, et al. 2010. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type PLOS Pathog. 6:e1000823
-
(2010)
PLOS Pathog.
, vol.6
, pp. e1000823
-
-
Shrestha, B.1
Brien, J.D.2
Sukupolvi-Petty, S.3
Austin, S.K.4
Edeling, M.A.5
-
180
-
-
69249213373
-
Dengue virus neutralization by human immune sera: Role of envelope protein domain III-reactive antibody
-
WahalaWM,Kraus AA, HaymoreLB, Accavitti-LoperMA, de Silva AM. 2009. Dengue virus neutralization by human immune sera: role of envelope protein domain III-reactive antibody. Virology 392:103-13
-
(2009)
Virology
, vol.392
, pp. 103-113
-
-
Wahala, W.M.1
Kraus, A.A.2
Haymore, L.B.3
Ma, A.4
De Silva, A.M.5
-
181
-
-
84901299184
-
Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement
-
Edeling MA, Austin SK, Shrestha B, Dowd KA, Mukherjee S, et al. 2014. Potent dengue virus neutralization by a therapeutic antibody with low monovalent affinity requires bivalent engagement. PLOS Pathog. 10:e1004072
-
(2014)
PLOS Pathog.
, vol.10
, pp. e1004072
-
-
Edeling, M.A.1
Austin, S.K.2
Shrestha, B.3
Dowd, K.A.4
Mukherjee, S.5
-
182
-
-
84860826712
-
Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions
-
de Alwis R, Smith SA, Olivarez NP, Messer WB, Huynh JP, et al. 2012. Identification of human neutralizing antibodies that bind to complex epitopes on dengue virions. PNAS 109:7439-44
-
(2012)
PNAS
, vol.109
, pp. 7439-7444
-
-
De Alwis, R.1
Smith, S.A.2
Olivarez, N.P.3
Messer, W.B.4
Huynh, J.P.5
-
183
-
-
84922947115
-
A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus
-
Dejnirattisai W, Wongwiwat W, Supasa S, Zhang X, Dai X, et al. 2015. A new class of highly potent, broadly neutralizing antibodies isolated from viremic patients infected with dengue virus. Nat. Immunol. 16:170-77
-
(2015)
Nat. Immunol.
, vol.16
, pp. 170-177
-
-
Dejnirattisai, W.1
Wongwiwat, W.2
Supasa, S.3
Zhang, X.4
Dai, X.5
-
184
-
-
84923347933
-
A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins
-
Fibriansah G, Tan JL, Smith SA, de Alwis R, Ng TS, et al. 2015. A highly potent human antibody neutralizes dengue virus serotype 3 by binding across three surface proteins. Nat. Commun. 6:6341
-
(2015)
Nat. Commun.
, vol.6
, pp. 6341
-
-
Fibriansah, G.1
Tan, J.L.2
Smith, S.A.3
De Alwis, R.4
Ng, T.S.5
-
185
-
-
84997533781
-
Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice
-
Sapparapu G, Fernandez E, Kose N, Bin C, Fox JM, et al. 2016. Neutralizing human antibodies prevent Zika virus replication and fetal disease in mice. Nature 540:443-47
-
(2016)
Nature
, vol.540
, pp. 443-447
-
-
Sapparapu, G.1
Fernandez, E.2
Kose, N.3
Bin, C.4
Fox, J.M.5
-
186
-
-
85006488816
-
Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus
-
Wang Q, Yang H, Liu X, Dai L, Ma T, et al. 2016. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Sci. Transl. Med. 8:369ra179
-
(2016)
Sci. Transl. Med.
, vol.8
, pp. 369ra179
-
-
Wang, Q.1
Yang, H.2
Liu, X.3
Dai, L.4
Ma, T.5
-
187
-
-
85015383878
-
A human antibody against Zika virus crosslinks the e protein to prevent infection
-
Hasan SS, Miller A, Sapparapu G, Fernandez E, Klose T, et al. 2017. A human antibody against Zika virus crosslinks the E protein to prevent infection. Nat. Commun. 8:14722
-
(2017)
Nat. Commun.
, vol.8
, pp. 14722
-
-
Hasan, S.S.1
Miller, A.2
Sapparapu, G.3
Fernandez, E.4
Klose, T.5
-
188
-
-
85018766415
-
Recurrent potent human neutralizing antibodies to Zika virus in Brazil and Mexico
-
11
-
Robbiani DF, Bozzacco L, Keeffe JR, Khouri R, Olsen PC, et al. 2017. Recurrent potent human neutralizing antibodies to Zika virus in Brazil and Mexico. Cell 169:597-609.e11
-
(2017)
Cell
, vol.169
, pp. 597-609
-
-
Robbiani, D.F.1
Bozzacco, L.2
Keeffe, J.R.3
Khouri, R.4
Olsen, P.C.5
-
189
-
-
0023818748
-
Pathogenesis of dengue: Challenges to molecular biology
-
Halstead SB. 1988. Pathogenesis of dengue: challenges to molecular biology. Science 239:476-81
-
(1988)
Science
, vol.239
, pp. 476-481
-
-
Halstead, S.B.1
-
190
-
-
0015784492
-
Studies on the pathogenesis of dengue infection in monkeys: II Clinical laboratory responses to heterologous infection
-
Halstead SB, Shotwell H, Casals J. 1973. Studies on the pathogenesis of dengue infection in monkeys: II. Clinical laboratory responses to heterologous infection. J. Infect. Dis. 128:15-22
-
(1973)
J. Infect. Dis.
, vol.128
, pp. 15-22
-
-
Halstead, S.B.1
Shotwell, H.2
Casals, J.3
-
191
-
-
0018580825
-
In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody
-
Halstead SB. 1979. In vivo enhancement of dengue virus infection in rhesus monkeys by passively transferred antibody. J. Infect. Dis. 140:527-33
-
(1979)
J. Infect. Dis.
, vol.140
, pp. 527-533
-
-
Halstead, S.B.1
-
192
-
-
34547141259
-
Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention
-
Goncalvez AP, Engle RE, St Claire M, Purcell RH, Lai CJ. 2007. Monoclonal antibody-mediated enhancement of dengue virus infection in vitro and in vivo and strategies for prevention. PNAS 104:9422-27
-
(2007)
PNAS
, vol.104
, pp. 9422-9427
-
-
Goncalvez, A.P.1
Engle, R.E.2
St Claire, M.3
Purcell, R.H.4
Lai, C.J.5
-
193
-
-
77649262630
-
Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification
-
Balsitis SJ, Williams KL, Lachica R, Flores D, Kyle JL, et al. 2010. Lethal antibody enhancement of dengue disease in mice is prevented by Fc modification. PLOS Pathog. 6:e1000790
-
(2010)
PLOS Pathog.
, vol.6
, pp. e1000790
-
-
Balsitis, S.J.1
Williams, K.L.2
Lachica, R.3
Flores, D.4
Kyle, J.L.5
-
194
-
-
84901337156
-
First experimental in vivo model of enhanced dengue disease severity through maternally acquired heterotypic dengue antibodies
-
Ng JK, Zhang SL, Tan HC, Yan B, Martinez JM, et al. 2014. First experimental in vivo model of enhanced dengue disease severity through maternally acquired heterotypic dengue antibodies. PLOS Pathog. 10:e1004031
-
(2014)
PLOS Pathog.
, vol.10
, pp. e1004031
-
-
Ng, J.K.1
Zhang, S.L.2
Tan, H.C.3
Yan, B.4
Martinez, J.M.5
-
195
-
-
85016812015
-
Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity
-
Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ, et al. 2017. Enhancement of Zika virus pathogenesis by preexisting antiflavivirus immunity. Science 356:175-80
-
(2017)
Science
, vol.356
, pp. 175-180
-
-
Bardina, S.V.1
Bunduc, P.2
Tripathi, S.3
Duehr, J.4
Frere, J.J.5
-
196
-
-
34147133789
-
The stoichiometry of antibodymediated neutralization and enhancement ofWest Nile virus infection
-
Pierson TC, Xu Q, Nelson S, Oliphant T, Nybakken GE, et al. 2007. The stoichiometry of antibodymediated neutralization and enhancement ofWest Nile virus infection. Cell Host Microbe 1:135-45
-
(2007)
Cell Host Microbe
, vol.1
, pp. 135-145
-
-
Pierson, T.C.1
Xu, Q.2
Nelson, S.3
Oliphant, T.4
Nybakken, G.E.5
-
197
-
-
37849009012
-
Infection-enhancing and-neutralizing activities of mouse monoclonal antibodies against dengue type 2 and 4 viruses are controlled by complement levels
-
Yamanaka A, Kosugi S, Konishi E. 2008. Infection-enhancing and-neutralizing activities of mouse monoclonal antibodies against dengue type 2 and 4 viruses are controlled by complement levels. J. Virol. 82:927-37
-
(2008)
J. Virol.
, vol.82
, pp. 927-937
-
-
Yamanaka, A.1
Kosugi, S.2
Konishi, E.3
-
198
-
-
0023161183
-
Disease severity-related antigenic differences in dengue 2 strains detected by dengue 4 monoclonal antibodies
-
Morens DM, Halstead SB. 1987. Disease severity-related antigenic differences in dengue 2 strains detected by dengue 4 monoclonal antibodies. J. Med. Virol. 22:169-74
-
(1987)
J. Med. Virol.
, vol.22
, pp. 169-174
-
-
Morens, D.M.1
Halstead, S.B.2
-
199
-
-
56549118853
-
Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection
-
Pierson TC, Diamond MS. 2008. Molecular mechanisms of antibody-mediated neutralisation of flavivirus infection. Expert Rev. Mol. Med. 10:e12
-
(2008)
Expert Rev. Mol. Med.
, vol.10
, pp. e12
-
-
Pierson, T.C.1
Diamond, M.S.2
-
200
-
-
33749454503
-
Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human FcγRIA (CD64) or FcgγRIIA (CD32)
-
Rodrigo WW, Jin X, Blackley SD, Rose RC, Schlesinger JJ. 2006. Differential enhancement of dengue virus immune complex infectivity mediated by signaling-competent and signaling-incompetent human FcγRIA (CD64) or FcgγRIIA (CD32). J. Virol. 80:10128-38
-
(2006)
J. Virol.
, vol.80
, pp. 10128-10138
-
-
Rodrigo, W.W.1
Jin, X.2
Blackley, S.D.3
Rose, R.C.4
Schlesinger, J.J.5
-
201
-
-
84878095918
-
Human FcγRII cytoplasmic domains differentially influence antibody-mediated dengue virus infection
-
Boonnak K, Slike BM, Donofrio GC,Marovich MA. 2013. Human FcγRII cytoplasmic domains differentially influence antibody-mediated dengue virus infection. J. Immunol. 190:5659-65
-
(2013)
J. Immunol.
, vol.190
, pp. 5659-5665
-
-
Boonnak, K.1
Slike, B.M.2
Donofrio, G.C.3
Marovich, M.A.4
-
202
-
-
79961053789
-
Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection
-
Chan KR, Zhang SL, Tan HC, Chan YK, Chow A, et al. 2011. Ligation of Fc gamma receptor IIB inhibits antibody-dependent enhancement of dengue virus infection. PNAS 108:12479-84
-
(2011)
PNAS
, vol.108
, pp. 12479-12484
-
-
Chan, K.R.1
Zhang, S.L.2
Tan, H.C.3
Chan, Y.K.4
Chow, A.5
-
203
-
-
33846805819
-
Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells
-
Chareonsirisuthigul T, Kalayanarooj S, Ubol S. 2007. Dengue virus (DENV) antibody-dependent enhancement of infection upregulates the production of anti-inflammatory cytokines, but suppresses anti-DENV free radical and pro-inflammatory cytokine production, in THP-1 cells. J. Gen. Virol. 88:365-75
-
(2007)
J. Gen. Virol.
, vol.88
, pp. 365-375
-
-
Chareonsirisuthigul, T.1
Kalayanarooj, S.2
Ubol, S.3
-
204
-
-
41949101934
-
Role of dendritic cells in antibodydependent enhancement of dengue virus infection
-
Boonnak K, Slike BM, Burgess TH, Mason RM, Wu SJ, et al. 2008. Role of dendritic cells in antibodydependent enhancement of dengue virus infection. J. Virol. 82:3939-51
-
(2008)
J. Virol.
, vol.82
, pp. 3939-3951
-
-
Boonnak, K.1
Slike, B.M.2
Burgess, T.H.3
Mason, R.M.4
Wu, S.J.5
-
205
-
-
84894378872
-
Leukocyte immunoglobulin-like receptor B1 is critical for antibody-dependent dengue
-
Chan KR,Ong EZ, TanHC, Zhang SL, ZhangQ, et al. 2014. Leukocyte immunoglobulin-like receptor B1 is critical for antibody-dependent dengue. PNAS 111:2722-27
-
(2014)
PNAS
, vol.111
, pp. 2722-2727
-
-
Chan, K.R.1
Ong, E.Z.2
Tan, H.C.3
Zhang, S.L.4
Zhang, Q.5
-
206
-
-
85014764085
-
IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity
-
Wang TT, Sewatanon J, Memoli MJ, Wrammert J, Bournazos S, et al. 2017. IgG antibodies to dengue enhanced for FcγRIIIA binding determine disease severity. Science 355:395-98
-
(2017)
Science
, vol.355
, pp. 395-398
-
-
Wang, T.T.1
Sewatanon, J.2
Memoli, M.J.3
Wrammert, J.4
Bournazos, S.5
-
207
-
-
0038379214
-
Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever
-
Mongkolsapaya J, Dejnirattisai W, Xu XN, Vasanawathana S, Tangthawornchaikul N, et al. 2003. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat. Med. 9:921-27
-
(2003)
Nat. Med.
, vol.9
, pp. 921-927
-
-
Mongkolsapaya, J.1
Dejnirattisai, W.2
Xu, X.N.3
Vasanawathana, S.4
Tangthawornchaikul, N.5
-
208
-
-
78049244414
-
Immunodominant T-cell responses to dengue virus NS3 are associated with DHF
-
Duangchinda T, DejnirattisaiW, Vasanawathana S, Limpitikul W, Tangthawornchaikul N, et al. 2010. Immunodominant T-cell responses to dengue virus NS3 are associated with DHF. PNAS 107:16922-27
-
(2010)
PNAS
, vol.107
, pp. 16922-16927
-
-
Duangchinda, T.1
Dejnirattisai, W.2
Vasanawathana, S.3
Limpitikul, W.4
Tangthawornchaikul, N.5
-
209
-
-
79960835805
-
Immunity to dengue virus: A tale of original antigenic sin and tropical cytokine storms
-
Rothman AL. 2011. Immunity to dengue virus: a tale of original antigenic sin and tropical cytokine storms. Nat. Rev. Immunol. 11:532-43
-
(2011)
Nat. Rev. Immunol.
, vol.11
, pp. 532-543
-
-
Rothman, A.L.1
-
210
-
-
23444438390
-
Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes
-
Mangada MM, Rothman AL. 2005. Altered cytokine responses of dengue-specific CD4+ T cells to heterologous serotypes. J. Immunol. 175:2676-83
-
(2005)
J. Immunol.
, vol.175
, pp. 2676-2683
-
-
Mangada, M.M.1
Rothman, A.L.2
-
211
-
-
0037097789
-
Dengue-specific T cell responses in peripheral blood mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren
-
Mangada MM, Endy TP, Nisalak A, Chunsuttiwat S, Vaughn DW, et al. 2002. Dengue-specific T cell responses in peripheral blood mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren. J. Infect. Dis. 185:1697-703
-
(2002)
J. Infect. Dis.
, vol.185
, pp. 1697-1703
-
-
Mangada, M.M.1
Endy, T.P.2
Nisalak, A.3
Chunsuttiwat, S.4
Vaughn, D.W.5
-
212
-
-
84878446213
-
Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells
-
Weiskopf D, Angelo MA, de Azeredo EL, Sidney J, Greenbaum JA, et al. 2013. Comprehensive analysis of dengue virus-specific responses supports an HLA-linked protective role for CD8+ T cells. PNAS 110:E2046-53
-
(2013)
PNAS
, vol.110
, pp. E2046-E2053
-
-
Weiskopf, D.1
Angelo, M.A.2
De Azeredo, E.L.3
Sidney, J.4
Greenbaum, J.A.5
-
213
-
-
84948421479
-
Human CD8+ T-cell responses against the 4 dengue virus serotypes are associated with distinct patterns of protein targets
-
Weiskopf D, Cerpas C, Angelo MA, Bangs DJ, Sidney J, et al. 2015. Human CD8+ T-cell responses against the 4 dengue virus serotypes are associated with distinct patterns of protein targets. J. Infect. Dis. 212:1743-51
-
(2015)
J. Infect. Dis.
, vol.212
, pp. 1743-1751
-
-
Weiskopf, D.1
Cerpas, C.2
Angelo, M.A.3
Bangs, D.J.4
Sidney, J.5
-
214
-
-
84919431456
-
The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes
-
Weiskopf D, Angelo MA, Bangs DJ, Sidney J, Paul S, et al. 2015. The human CD8+ T cell responses induced by a live attenuated tetravalent dengue vaccine are directed against highly conserved epitopes. J. Virol. 89:120-28
-
(2015)
J. Virol.
, vol.89
, pp. 120-128
-
-
Weiskopf, D.1
Angelo, M.A.2
Bangs, D.J.3
Sidney, J.4
Paul, S.5
-
215
-
-
84964963377
-
Immunodominant dengue virusspecific CD8+ T cell responses are associated with a memory PD-1+ phenotype
-
de Alwis R, Bangs DJ, Angelo MA, Cerpas C, Fernando A, et al. 2016. Immunodominant dengue virusspecific CD8+ T cell responses are associated with a memory PD-1+ phenotype. J. Virol. 90:4771-79
-
(2016)
J. Virol.
, vol.90
, pp. 4771-4779
-
-
De Alwis, R.1
Bangs, D.J.2
Angelo, M.A.3
Cerpas, C.4
Fernando, A.5
-
216
-
-
84924589140
-
Virus-specific T lymphocytes home to the skin during natural dengue infection
-
Rivino L, Kumaran EA, Thein TL, Too CT, Gan VC, et al. 2015. Virus-specific T lymphocytes home to the skin during natural dengue infection. Sci. Transl. Med. 7:278ra35
-
(2015)
Sci. Transl. Med.
, vol.7
, pp. 278ra35
-
-
Rivino, L.1
Kumaran, E.A.2
Thein, T.L.3
Too, C.T.4
Gan, V.C.5
-
217
-
-
79954588278
-
Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection
-
Hatch S, Endy TP, Thomas S, Mathew A, Potts J, et al. 2011. Intracellular cytokine production by dengue virus-specific T cells correlates with subclinical secondary infection. J. Infect. Dis. 203:1282-91
-
(2011)
J. Infect. Dis.
, vol.203
, pp. 1282-1291
-
-
Hatch, S.1
Endy, T.P.2
Thomas, S.3
Mathew, A.4
Potts, J.5
-
218
-
-
84874705148
-
Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection
-
Rivino L, Kumaran EA, Jovanovic V, Nadua K, Teo EW, et al. 2013. Differential targeting of viral components by CD4+ versus CD8+ T lymphocytes in dengue virus infection. J. Virol. 87:2693-706
-
(2013)
J. Virol.
, vol.87
, pp. 2693-2706
-
-
Rivino, L.1
Kumaran, E.A.2
Jovanovic, V.3
Nadua, K.4
Teo, E.W.5
-
219
-
-
84864604405
-
Primary vaccination with low dose live dengue 1 virus generates a proinflammatory,multifunctionalTcell response in humans
-
Lindow JC, Borochoff-Porte N, Durbin AP,Whitehead SS, Fimlaid KA, et al. 2012. Primary vaccination with low dose live dengue 1 virus generates a proinflammatory,multifunctionalTcell response in humans. PLOS Negl. Trop. Dis. 6:e1742
-
(2012)
PLOS Negl. Trop. Dis.
, vol.6
, pp. e1742
-
-
Lindow, J.C.1
Borochoff-Porte, N.2
Durbin, A.P.3
Whitehead, S.S.4
Fimlaid, K.A.5
-
220
-
-
84938630734
-
Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity
-
Weiskopf D, Bangs DJ, Sidney J, Kolla RV,De Silva AD, et al. 2015. Dengue virus infection elicits highly polarized CX3CR1+ cytotoxic CD4+ T cells associated with protective immunity. PNAS 112:E4256-63
-
(2015)
PNAS
, vol.112
, pp. E4256-E4263
-
-
Weiskopf, D.1
Bangs, D.J.2
Sidney, J.3
Kolla, R.V.4
De Silva, A.D.5
-
221
-
-
84855410183
-
Protection from secondary dengue virus infection in a mouse model reveals the role of serotype cross-reactive B and T cells
-
Zompi S, Santich BH, Beatty PR, Harris E. 2012. Protection from secondary dengue virus infection in a mouse model reveals the role of serotype cross-reactive B and T cells. J. Immunol. 188:404-16
-
(2012)
J. Immunol.
, vol.188
, pp. 404-416
-
-
Zompi, S.1
Santich, B.H.2
Beatty, P.R.3
Harris, E.4
-
222
-
-
65249179681
-
A protective role for dengue virus-specific CD8+ T cells
-
Yauch LE, Zellweger RM, Kotturi MF,Qutubuddin A, Sidney J, et al. 2009. A protective role for dengue virus-specific CD8+ T cells. J. Immunol. 182:4865-73
-
(2009)
J. Immunol.
, vol.182
, pp. 4865-4873
-
-
Yauch, L.E.1
Zellweger, R.M.2
Kotturi, M.F.3
Qutubuddin, A.4
Sidney, J.5
-
223
-
-
78149481379
-
CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination
-
Yauch LE, Prestwood TR, May MM, Morar MM, Zellweger RM, et al. 2010. CD4+ T cells are not required for the induction of dengue virus-specific CD8+ T cell or antibody responses but contribute to protection after vaccination. J. Immunol. 185:5405-16
-
(2010)
J. Immunol.
, vol.185
, pp. 5405-5416
-
-
Yauch, L.E.1
Prestwood, T.R.2
May, M.M.3
Morar, M.M.4
Zellweger, R.M.5
-
224
-
-
84929598310
-
CD8+ Tcells can mediate short-term protection against heterotypic dengue virus reinfection in mice
-
Zellweger RM,TangWW,Eddy WE, King K, Sanchez MC, Shresta S. 2015. CD8+ Tcells can mediate short-term protection against heterotypic dengue virus reinfection in mice. J. Virol. 89:6494-505
-
(2015)
J. Virol.
, vol.89
, pp. 6494-6505
-
-
Zellweger, R.M.1
Tang, W.W.2
Eddy, W.E.3
King, K.4
Sanchez, M.C.5
Shresta, S.6
-
225
-
-
84991282421
-
Protective role of cross-reactive CD8 T cells against dengue virus infection
-
Elong Ngono A, Chen HW, Tang WW, Joo Y, King K, et al. 2016. Protective role of cross-reactive CD8 T cells against dengue virus infection. EBioMedicine 13:284-93
-
(2016)
EBioMedicine
, vol.13
, pp. 284-293
-
-
Elong Ngono, A.1
Chen, H.W.2
Tang, W.W.3
Joo, Y.4
King, K.5
-
226
-
-
84887312543
-
Role of humoral versus cellular responses induced by a protective dengue vaccine candidate
-
Zellweger RM, Miller R, Eddy WE, White LJ, Johnston RE, Shresta S. 2013. Role of humoral versus cellular responses induced by a protective dengue vaccine candidate. PLOS Pathog. 9:e1003723
-
(2013)
PLOS Pathog.
, vol.9
, pp. e1003723
-
-
Zellweger, R.M.1
Miller, R.2
Eddy, W.E.3
White, L.J.4
Johnston, R.E.5
Shresta, S.6
-
227
-
-
84907487372
-
CD8+ Tcells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice
-
Zellweger RM, Eddy WE,TangWW,Miller R, Shresta S. 2014. CD8+ Tcells prevent antigen-induced antibody-dependent enhancement of dengue disease in mice. J. Immunol. 193:4117-24
-
(2014)
J. Immunol.
, vol.193
, pp. 4117-4124
-
-
Zellweger, R.M.1
Eddy, W.E.2
Tang, W.W.3
Miller, R.4
Shresta, S.5
-
228
-
-
80054719513
-
Insights into HLA-restricted T cell responses in a novel mouse model of dengue virus infection point toward new implications for vaccine design
-
Weiskopf D, Yauch LE, Angelo MA, JohnDV, Greenbaum JA, et al. 2011. Insights into HLA-restricted T cell responses in a novel mouse model of dengue virus infection point toward new implications for vaccine design. J. Immunol. 187:4268-79
-
(2011)
J. Immunol.
, vol.187
, pp. 4268-4279
-
-
Weiskopf, D.1
Yauch, L.E.2
Angelo, M.A.3
John, D.V.4
Greenbaum, J.A.5
-
229
-
-
84906972011
-
Immunodominance changes as a function of the infecting dengue virus serotype and primary versus secondary infection
-
Weiskopf D, Angelo MA, Sidney J, Peters B, Shresta S, Sette A. 2014. Immunodominance changes as a function of the infecting dengue virus serotype and primary versus secondary infection. J. Virol. 88:11383-94
-
(2014)
J. Virol.
, vol.88
, pp. 11383-11394
-
-
Weiskopf, D.1
Angelo, M.A.2
Sidney, J.3
Peters, B.4
Shresta, S.5
Sette, A.6
-
230
-
-
84948421479
-
Human CD8+ T-cell responses against the 4 dengue virus serotypes are associated with distinct patterns of protein targets
-
Weiskopf D, Cerpas C, Angelo MA, Bangs DJ, Sidney J, et al. 2015. Human CD8+ T-cell responses against the 4 dengue virus serotypes are associated with distinct patterns of protein targets. J. Infect. Dis. 212:1743-51
-
(2015)
J. Infect. Dis.
, vol.212
, pp. 1743-1751
-
-
Weiskopf, D.1
Cerpas, C.2
Angelo, M.A.3
Bangs, D.J.4
Sidney, J.5
-
231
-
-
84952638965
-
CD8+ T-cell responses in flavivirusnaive individuals following immunization with a live-attenuated tetravalent dengue vaccine candidate
-
ChuH,George SL, Stinchcomb DT, Osorio JE, Partidos CD. 2015.CD8+ T-cell responses in flavivirusnaive individuals following immunization with a live-attenuated tetravalent dengue vaccine candidate. J. Infect. Dis. 212:1618-28
-
(2015)
J. Infect. Dis.
, vol.212
, pp. 1618-1628
-
-
Chu, H.1
George, S.L.2
Stinchcomb, D.T.3
Osorio, J.E.4
Partidos, C.D.5
-
232
-
-
84976632397
-
A rhesus macaque model of Asian-lineage Zika virus infection
-
Dudley DM, Aliota MT, Mohr EL, Weiler AM, Lehrer-Brey G, et al. 2016. A rhesus macaque model of Asian-lineage Zika virus infection. Nat. Commun. 7:12204
-
(2016)
Nat. Commun.
, vol.7
, pp. 12204
-
-
Dudley, D.M.1
Aliota, M.T.2
Mohr, E.L.3
Weiler, A.M.4
Lehrer-Brey, G.5
-
233
-
-
85009895244
-
Mapping and role of the CD8+ T cell response during primary Zika virus infection in mice
-
Elong Ngono A, Vizcarra EA, Tang WW, Sheets N, Joo Y, et al. 2017. Mapping and role of the CD8+ T cell response during primary Zika virus infection in mice. Cell Host Microbe 21:35-46
-
(2017)
Cell Host Microbe
, vol.21
, pp. 35-46
-
-
Elong Ngono, A.1
Vizcarra, E.A.2
Tang, W.W.3
Sheets, N.4
Joo, Y.5
-
234
-
-
85014063648
-
Analysis of the T cell response to Zika virus and identification of a novel CD8+ T cell epitope in immunocompetent mice
-
Pardy RD, Rajah MM, Condotta SA, Taylor NG, Sagan SM, Richer MJ. 2017. Analysis of the T cell response to Zika virus and identification of a novel CD8+ T cell epitope in immunocompetent mice. PLOS Pathog. 13:e1006184
-
(2017)
PLOS Pathog.
, vol.13
, pp. e1006184
-
-
Pardy, R.D.1
Rajah, M.M.2
Condotta, S.A.3
Taylor, N.G.4
Sagan, S.M.5
Richer, M.J.6
-
235
-
-
85018475728
-
Adaptive immune responses to Zika virus are important for controlling virus infection and preventing infection in brain and testes
-
Winkler CW, Myers LM, Woods TA,Messer RJ, Carmody AB, et al. 2017. Adaptive immune responses to Zika virus are important for controlling virus infection and preventing infection in brain and testes. J. Immunol. 198:3526-35
-
(2017)
J. Immunol.
, vol.198
, pp. 3526-3535
-
-
Winkler, C.W.1
Myers, L.M.2
Woods, T.A.3
Messer, R.J.4
Carmody, A.B.5
|