메뉴 건너뛰기




Volumn 31, Issue 4, 2012, Pages 380-387

Current envelope analysis for defect identification and diagnosis in induction motors

Author keywords

Autoregressive model; Current envelope; Feature selection; Induction motor diagnosis

Indexed keywords

AMPLITUDE-MODULATED; AUTO REGRESSIVE MODELS; DEFECT CLASSIFICATION; DEFECT DIAGNOSIS; DEFECT IDENTIFICATION; DEGREE OF ACCURACY; ENVELOPE ANALYSIS; FEATURE EXTRACTION AND SELECTION; K-NEAREST NEIGHBORS; MOTOR CURRENTS; PATTERN CLASSIFIER;

EID: 84868709704     PISSN: 02786125     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmsy.2012.06.005     Document Type: Article
Times cited : (65)

References (39)
  • 2
    • 77955327865 scopus 로고    scopus 로고
    • Process monitoring with sensory machine tool components
    • H.C. Mohring, K.M. Litwinski, and O. Gummer Process monitoring with sensory machine tool components CIRP Annals 59 2010 383 386
    • (2010) CIRP Annals , vol.59 , pp. 383-386
    • Mohring, H.C.1    Litwinski, K.M.2    Gummer, O.3
  • 3
    • 0033718576 scopus 로고    scopus 로고
    • Integrated condition monitoring and fault diagnosis for modern manufacturing systems
    • Z.D. Zhou, Y.P. Chen, J.Y.H. Fuh, and A.Y.C. Nee Integrated condition monitoring and fault diagnosis for modern manufacturing systems CIRP Annals 49 2000 387 390
    • (2000) CIRP Annals , vol.49 , pp. 387-390
    • Zhou, Z.D.1    Chen, Y.P.2    Fuh, J.Y.H.3    Nee, A.Y.C.4
  • 4
    • 0042371709 scopus 로고    scopus 로고
    • Mapping theory: A new approach to design of multi-sensor monitoring of reconfigurable machining systems (RMS)
    • M.G. Mehrabi, and E. Kannatey-Asibu Mapping theory: a new approach to design of multi-sensor monitoring of reconfigurable machining systems (RMS) Journal of Manufacturing Systems 20 2001 297 304
    • (2001) Journal of Manufacturing Systems , vol.20 , pp. 297-304
    • Mehrabi, M.G.1    Kannatey-Asibu, E.2
  • 5
    • 3042690857 scopus 로고    scopus 로고
    • Multisensor process performance assessment through use of autoregressive modeling and feature maps
    • N. Casoetto, D. Djurdjanovic, R. Mayor, J. Ni, and J. Lee Multisensor process performance assessment through use of autoregressive modeling and feature maps Journal of Manufacturing Systems 22 2003 64 72
    • (2003) Journal of Manufacturing Systems , vol.22 , pp. 64-72
    • Casoetto, N.1    Djurdjanovic, D.2    Mayor, R.3    Ni, J.4    Lee, J.5
  • 6
    • 0034297416 scopus 로고    scopus 로고
    • A review of induction motors signature analysis as a medium for faults detection
    • M.E. Hachemi A review of induction motors signature analysis as a medium for faults detection IEEE Transactions on Industrial Electronics 47 2000 984 993
    • (2000) IEEE Transactions on Industrial Electronics , vol.47 , pp. 984-993
    • Hachemi, M.E.1
  • 8
    • 33745727602 scopus 로고    scopus 로고
    • Signatures of electric faults in the force distribution and vibration pattern of induction motors
    • P. Rodriguez, A. Belahcen, and A. Arkkio Signatures of electric faults in the force distribution and vibration pattern of induction motors IEE Proceedings: B Electric Power Applications 153 2006 523 530
    • (2006) IEE Proceedings: B Electric Power Applications , vol.153 , pp. 523-530
    • Rodriguez, P.1    Belahcen, A.2    Arkkio, A.3
  • 13
    • 40449114456 scopus 로고    scopus 로고
    • On-line monitoring of mechanical faults in variable-speed induction motor drives using the Wigner distribution
    • M. Blodt, D. Bonacci, J. Regnier, M. Chabert, and J. Faucher On-line monitoring of mechanical faults in variable-speed induction motor drives using the Wigner distribution IEEE Transactions on Industrial Electronics 55 2008 522 533
    • (2008) IEEE Transactions on Industrial Electronics , vol.55 , pp. 522-533
    • Blodt, M.1    Bonacci, D.2    Regnier, J.3    Chabert, M.4    Faucher, J.5
  • 16
    • 67349107478 scopus 로고    scopus 로고
    • The search for optimal feature set in power quality event classification
    • S. Gunal, O.N. Gerek, D.G. Ece, and R. Edizkan The search for optimal feature set in power quality event classification Expert Systems with Applications 36 2009 10266 10273
    • (2009) Expert Systems with Applications , vol.36 , pp. 10266-10273
    • Gunal, S.1    Gerek, O.N.2    Ece, D.G.3    Edizkan, R.4
  • 18
    • 56349137294 scopus 로고    scopus 로고
    • Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference
    • V.T. Tran, B.S. Yang, M.S. Oh, and A.C.C. Tan Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference Expert Systems with Applications 36 2009 1840 1849
    • (2009) Expert Systems with Applications , vol.36 , pp. 1840-1849
    • Tran, V.T.1    Yang, B.S.2    Oh, M.S.3    Tan, A.C.C.4
  • 19
    • 0038042280 scopus 로고    scopus 로고
    • Application of AI tools in fault diagnosis of electrical machines and drives - An overview
    • M.A. Awadallah, and M.M. Morcos Application of AI tools in fault diagnosis of electrical machines and drives - an overview IEEE Transactions on Energy Conversion 18 2003 245 251
    • (2003) IEEE Transactions on Energy Conversion , vol.18 , pp. 245-251
    • Awadallah, M.A.1    Morcos, M.M.2
  • 20
    • 79954455895 scopus 로고    scopus 로고
    • Cascade Neural-Network based fault classifier for three-phase induction motor
    • V.N. Ghate, and S.V. Dudul Cascade Neural-Network based fault classifier for three-phase induction motor IEEE Transactions on Industrial Electronics 58 2011 1555 1563
    • (2011) IEEE Transactions on Industrial Electronics , vol.58 , pp. 1555-1563
    • Ghate, V.N.1    Dudul, S.V.2
  • 21
    • 34548306420 scopus 로고    scopus 로고
    • A comparison of classifier performance for fault diagnosis of induction motor using multi-type signals
    • G. Niu, J.D. Son, A. Widodo, B.S. Yang, D.H. Hwang, and D.S. Kang A comparison of classifier performance for fault diagnosis of induction motor using multi-type signals Structural Health Monitoring 6 2007 215 229
    • (2007) Structural Health Monitoring , vol.6 , pp. 215-229
    • Niu, G.1    Son, J.D.2    Widodo, A.3    Yang, B.S.4    Hwang, D.H.5    Kang, D.S.6
  • 22
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • M. Kudo, and J. Sklansky Comparison of algorithms that select features for pattern classifiers Pattern Recognition 22 2000 25 41
    • (2000) Pattern Recognition , vol.22 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 23
    • 67651039351 scopus 로고    scopus 로고
    • Induction machine condition monitoring using notch-filtered motor current
    • S. Gunal, D.G. Ece, and O.N. Gerek Induction machine condition monitoring using notch-filtered motor current Mechanical Systems and Signal Processing 23 2009 2658 2670
    • (2009) Mechanical Systems and Signal Processing , vol.23 , pp. 2658-2670
    • Gunal, S.1    Ece, D.G.2    Gerek, O.N.3
  • 24
    • 41349105525 scopus 로고    scopus 로고
    • Induction machine broken bar and stator short-circuit fault diagnostics based on three-phase stator current envelopes
    • A.M.D. Silva, R.J. Povinelli, and N.A.O. Demerdash Induction machine broken bar and stator short-circuit fault diagnostics based on three-phase stator current envelopes IEEE Transactions on Industrial Electronics 55 2008 1310 1318
    • (2008) IEEE Transactions on Industrial Electronics , vol.55 , pp. 1310-1318
    • Silva, A.M.D.1    Povinelli, R.J.2    Demerdash, N.A.O.3
  • 25
    • 27944494029 scopus 로고    scopus 로고
    • An extension of the Naïve Bayesian classifier
    • R.R. Yager An extension of the Naïve Bayesian classifier Information Sciences 176 2004 577 588
    • (2004) Information Sciences , vol.176 , pp. 577-588
    • Yager, R.R.1
  • 26
    • 29144482039 scopus 로고    scopus 로고
    • Neighborhood size selection in the k-nearest-neighbor rule using statistical confidence
    • J. Wang, P. Nesjovic, and L.N. Cooper Neighborhood size selection in the k-nearest-neighbor rule using statistical confidence Pattern Recognition 39 2006 417 423
    • (2006) Pattern Recognition , vol.39 , pp. 417-423
    • Wang, J.1    Nesjovic, P.2    Cooper, L.N.3
  • 28
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • A. Widodo, and B.S. Yang Support vector machine in machine condition monitoring and fault diagnosis Mechanical Systems and Signal Processing 21 2007 2560 2574
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 2560-2574
    • Widodo, A.1    Yang, B.S.2
  • 29
    • 33845623677 scopus 로고    scopus 로고
    • Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
    • A. Widodo, and B.S. Yang Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors Expert Systems with Applications 33 2007 241 250
    • (2007) Expert Systems with Applications , vol.33 , pp. 241-250
    • Widodo, A.1    Yang, B.S.2
  • 31
    • 0036554741 scopus 로고    scopus 로고
    • Autoregressive model-based gear fault diagnosis
    • W. Wang, and A.K. Wong Autoregressive model-based gear fault diagnosis Journal of Vibration and Acoustics 124 2002 172 179
    • (2002) Journal of Vibration and Acoustics , vol.124 , pp. 172-179
    • Wang, W.1    Wong, A.K.2
  • 32
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike A new look at the statistical model identification IEEE Transactions on Automatic Control 19 1974 716 723
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 33
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen Modeling by shortest data description Automatica 14 1978 465 471
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 34
    • 0002872575 scopus 로고
    • Approximate efficiency of a selection procedure for the number of regression variables
    • R. Shibata Approximate efficiency of a selection procedure for the number of regression variables Biometrika 71 1984 43 49
    • (1984) Biometrika , vol.71 , pp. 43-49
    • Shibata, R.1
  • 36
    • 77953529527 scopus 로고    scopus 로고
    • Structural health monitoring with autoregressive support vector machines
    • 021004-1-021004-9
    • L. Bornn, C.R. Farrar, G. Park, and K. Farinholt Structural health monitoring with autoregressive support vector machines Journal of Vibration and Acoustics 131 2009 021004-1-021004-9
    • (2009) Journal of Vibration and Acoustics , vol.131
    • Bornn, L.1    Farrar, C.R.2    Park, G.3    Farinholt, K.4
  • 37
    • 49249116760 scopus 로고    scopus 로고
    • Optimal feature selection using genetic algorithm for mechanical fault detection of induction motor
    • N.T. Nguyen, H.H. Lee, and J.M. Kwon Optimal feature selection using genetic algorithm for mechanical fault detection of induction motor Journal of Mechanical Science and Technology 22 2008 490 496
    • (2008) Journal of Mechanical Science and Technology , vol.22 , pp. 490-496
    • Nguyen, N.T.1    Lee, H.H.2    Kwon, J.M.3
  • 38
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy IEEE Transactions on Pattern Analysis and Machine Intelligence 27 2005 1226 1238
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 39
    • 80455129446 scopus 로고    scopus 로고
    • Wavelet domain principle feature analysis for spindle health diagnosis
    • R. Yan, and R.X. Gao Wavelet domain principle feature analysis for spindle health diagnosis Structural Health Monitoring 10 2011 631 642
    • (2011) Structural Health Monitoring , vol.10 , pp. 631-642
    • Yan, R.1    Gao, R.X.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.