메뉴 건너뛰기




Volumn 217, Issue , 2012, Pages 96-107

Multi-sensor data fusion using support vector machine for motor fault detection

Author keywords

Condition based Monitoring; Information fusion; Motor diagnosis; Sensor fusion; Support vector machine

Indexed keywords

CONDITION-BASED MONITORING; DYNAMIC CONDITION; EVIDENCE FUSION; EVIDENCE THEORIES; FAULT CLASSIFICATION; FAULT SIGNAL; HYBRID METHOD; HYBRID MODEL; MOTOR DIAGNOSIS; MOTOR FAULT; MULTI SENSOR; MULTIPLE SENSORS; MULTISENSOR DATA FUSION; SENSOR FUSION; SHORT TERM FOURIER TRANSFORMS;

EID: 84865606945     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2012.06.016     Document Type: Article
Times cited : (218)

References (53)
  • 2
    • 33845623677 scopus 로고    scopus 로고
    • Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors
    • W. Achmad, and Y. Bo-Suk Application of nonlinear feature extraction and support vector machines for fault diagnosis of induction motors Expert Systems with Applications 33 2007 241 250
    • (2007) Expert Systems with Applications , vol.33 , pp. 241-250
    • Achmad, W.1    Bo-Suk, Y.2
  • 3
    • 33750481498 scopus 로고    scopus 로고
    • Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors
    • W. Achmad, Y. Bo-Suk, and H. Tian Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors Expert Systems with Applications 32 2007 299 312
    • (2007) Expert Systems with Applications , vol.32 , pp. 299-312
    • Achmad, W.1    Bo-Suk, Y.2    Tian, H.3
  • 4
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • W. Achmad, and Y. Bo-Suk Support vector machine in machine condition monitoring and fault diagnosis Mechanical Systems and Signal Processing 21 6 2007 2560 2574
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.6 , pp. 2560-2574
    • Achmad, W.1    Bo-Suk, Y.2
  • 5
    • 0023830455 scopus 로고
    • In-process detection of tool breakages using time series monitoring of cutting forces
    • Y. Altintas In-process detection of tool breakages using time series monitoring of cutting forces International Journal of Machine Tools and Manufacture 28 2 1988 157 172
    • (1988) International Journal of Machine Tools and Manufacture , vol.28 , Issue.2 , pp. 157-172
    • Altintas, Y.1
  • 7
    • 80052936600 scopus 로고    scopus 로고
    • Implementation of a New Hybrid Methodology for Fault Signal Classification Using Short-Time Fourier Transform and Support Vector Machines
    • ISBN 978-3-642-13160-8
    • T.P. Banerjee, S. Das, J. Roychoudhury, A. Abraham, Implementation of a New Hybrid Methodology for Fault Signal Classification Using Short-Time Fourier Transform and Support Vector Machines, in: Springer book series of Advances of Soft computing, 2010, pp. 219-225 [ISBN 978-3-642-13160-8].
    • (2010) Springer Book Series of Advances of Soft Computing , pp. 219-225
    • Banerjee, T.P.1    Das, S.2    Roychoudhury, J.3    Abraham, A.4
  • 10
    • 69249210027 scopus 로고    scopus 로고
    • Support Vector Machine for Machine Fault Diagnosis and Prognosis
    • Y. Bo-Suk, and W. Achmad Support Vector Machine for Machine Fault Diagnosis and Prognosis Journal of System Design and Dynamics 2 1 2008 12 23
    • (2008) Journal of System Design and Dynamics , vol.2 , Issue.1 , pp. 12-23
    • Bo-Suk, Y.1    Achmad, W.2
  • 18
    • 0033103669 scopus 로고    scopus 로고
    • Application of wavelets to analysis and simulation of earthquake motions
    • J. Iyama, and H. Kuwamura Application of wavelets to analysis and simulation of earthquake motions Earthquake Engineering and Structural Dynamics 28 3 1999 255 272
    • (1999) Earthquake Engineering and Structural Dynamics , vol.28 , Issue.3 , pp. 255-272
    • Iyama, J.1    Kuwamura, H.2
  • 19
    • 19044365246 scopus 로고    scopus 로고
    • Model-based fault-detection and diagnosis - Status and applications
    • R. Isermann Model-based fault-detection and diagnosis - status and applications Annual Reviews in Control 29 1 2005 71 85
    • (2005) Annual Reviews in Control , vol.29 , Issue.1 , pp. 71-85
    • Isermann, R.1
  • 20
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural network augmented by genetic algorithms
    • L.B. Jack, and A.K. Nandi Fault detection using support vector machines and artificial neural network augmented by genetic algorithms Mechanical System Signal Processing 16 2002 373 390
    • (2002) Mechanical System Signal Processing , vol.16 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 23
    • 0032676070 scopus 로고    scopus 로고
    • On the selection of informative wavelets for machinery diagnosis
    • B. Liu, and S.F. Ling On the selection of informative wavelets for machinery diagnosis Mechanical Systems and Signal Processing 13 1 1999 145 162
    • (1999) Mechanical Systems and Signal Processing , vol.13 , Issue.1 , pp. 145-162
    • Liu, B.1    Ling, S.F.2
  • 26
    • 0142163128 scopus 로고    scopus 로고
    • Multi-sensor fusion and integration: Approaches, applications, and future research directions
    • R. Luo, C. Yih, and K. Su Multi-sensor fusion and integration: approaches, applications, and future research directions IEEE Sensors Journal 2 2002 107 119
    • (2002) IEEE Sensors Journal , vol.2 , pp. 107-119
    • Luo, R.1    Yih, C.2    Su, K.3
  • 27
    • 0042968728 scopus 로고    scopus 로고
    • 2PTMC classification algorithm based on support vector machines and its application to fault diagnosis
    • X.X. Ma, X.Y. Huang, and Y. Chai 2PTMC classification algorithm based on support vector machines and its application to fault diagnosis Control and Decision 18 2003 272 284
    • (2003) Control and Decision , vol.18 , pp. 272-284
    • Ma, X.X.1    Huang, X.Y.2    Chai, Y.3
  • 28
    • 0035364627 scopus 로고    scopus 로고
    • Multi-sensor integration and fusion model that uses a fuzzy inference system
    • A. Mahajan, W. Kaihong, and P.K. Ray Multi-sensor integration and fusion model that uses a fuzzy inference system IEEE/ASME Transactions on Mechatronics 6 2001 188 196
    • (2001) IEEE/ASME Transactions on Mechatronics , vol.6 , pp. 188-196
    • Mahajan, A.1    Kaihong, W.2    Ray, P.K.3
  • 29
    • 34548026227 scopus 로고    scopus 로고
    • H-infinity fault detection filter design for networked control systems modeled by discrete Markovian jump systems
    • Z. Mao, B. Jiang, and P. Shi H-infinity fault detection filter design for networked control systems modeled by discrete Markovian jump systems Control Theory & Applications IET 1 2007 1336 1343
    • (2007) Control Theory & Applications IET , vol.1 , pp. 1336-1343
    • Mao, Z.1    Jiang, B.2    Shi, P.3
  • 32
    • 0034297534 scopus 로고    scopus 로고
    • Application of model-based fault detection to a brushless DC motor
    • O. Moseler, and R. Isermann Application of model-based fault detection to a brushless DC motor IEEE Transactions on Industrial Electronics 47 5 2000 1015 1020
    • (2000) IEEE Transactions on Industrial Electronics , vol.47 , Issue.5 , pp. 1015-1020
    • Moseler, O.1    Isermann, R.2
  • 37
    • 33745744355 scopus 로고    scopus 로고
    • Time-frequency representations based detector of chaos in oscillatory circuits
    • V. Rubezic, I. Djurovic, and M. Dakovic Time-frequency representations based detector of chaos in oscillatory circuits Signal Processing 86 9 2006 2255 2270
    • (2006) Signal Processing , vol.86 , Issue.9 , pp. 2255-2270
    • Rubezic, V.1    Djurovic, I.2    Dakovic, M.3
  • 39
    • 0942289503 scopus 로고    scopus 로고
    • Gear fault detection using artificial neural networks and support vector machines with genetic algorithms
    • B. Samanta Gear fault detection using artificial neural networks and support vector machines with genetic algorithms Mechanical System Signal Processing 18 3 2004 625 644
    • (2004) Mechanical System Signal Processing , vol.18 , Issue.3 , pp. 625-644
    • Samanta, B.1
  • 40
    • 0034216074 scopus 로고    scopus 로고
    • Decomposition of biomedical signals for enhancement of their time-frequency distributions
    • M. Scheuer, R.J. Sclabassi, and S. Mingui Decomposition of biomedical signals for enhancement of their time-frequency distributions Journal of Franklin Institute 337 4 2000 453 467
    • (2000) Journal of Franklin Institute , vol.337 , Issue.4 , pp. 453-467
    • Scheuer, M.1    Sclabassi, R.J.2    Mingui, S.3
  • 43
    • 0032208487 scopus 로고    scopus 로고
    • Structural and mechanical damage detection using wavelets
    • W.J. Staszewski Structural and mechanical damage detection using wavelets Shock and Vibration Digest 30 6 1998 457 472
    • (1998) Shock and Vibration Digest , vol.30 , Issue.6 , pp. 457-472
    • Staszewski, W.J.1
  • 46
    • 18144370743 scopus 로고    scopus 로고
    • Learning and Soft Computing - Support Vector Machines, Neural Networks
    • The MIT Press Cambridge, MA
    • K. Vojislav Learning and Soft Computing - Support Vector Machines, Neural Networks Fuzzy Logic Systems 2001 The MIT Press Cambridge, MA
    • (2001) Fuzzy Logic Systems
    • Vojislav, K.1
  • 47
    • 84881347908 scopus 로고    scopus 로고
    • On the use of on-line approximators for sensor fault diagnosis
    • June
    • A. Vemuri, M. Polycarpou, On the use of on-line approximators for sensor fault diagnosis, in: Proceedings of the American Control Conference, vol. 5, June 1998, pp. 2857-2861.
    • (1998) Proceedings of the American Control Conference , vol.5 , pp. 2857-2861
    • Vemuri, A.1    Polycarpou, M.2
  • 49
    • 49649091536 scopus 로고    scopus 로고
    • The Q-norm complexity measure and the minimum gradient method: A novel approach to the machine learning structural risk minimization problem
    • D.A.G. Vieira, R.H.C. Takahashi, V. Palade, J.A. Vasconcelos, and W.M. Caminhas The Q-norm complexity measure and the minimum gradient method: a novel approach to the machine learning structural risk minimization problem IEEE Transactions on Neural Networks 19 2008 1415 1430
    • (2008) IEEE Transactions on Neural Networks , vol.19 , pp. 1415-1430
    • Vieira, D.A.G.1    Takahashi, R.H.C.2    Palade, V.3    Vasconcelos, J.A.4    Caminhas, W.M.5
  • 50
    • 77956616296 scopus 로고    scopus 로고
    • Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization
    • Q. Wu, and R. Law Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization Information Sciences 180 23 2010 4514 4528
    • (2010) Information Sciences , vol.180 , Issue.23 , pp. 4514-4528
    • Wu, Q.1    Law, R.2
  • 51
    • 28744446722 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multi-class support vector machines
    • B.S. Yang, T. Han, and W.W. Hwang Fault diagnosis of rotating machinery based on multi-class support vector machines J Mechanical Science Technology 19 2005 845 858
    • (2005) J Mechanical Science Technology , vol.19 , pp. 845-858
    • Yang, B.S.1    Han, T.2    Hwang, W.W.3
  • 52
    • 4344683640 scopus 로고    scopus 로고
    • Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines
    • B.S. Yang, W.W. Hwang, D.J. Kim, and A.C. Tan Condition classification of small reciprocating compressor for refrigerators using artificial neural networks and support vector machines Mechanical System Signal Processing 19 2005 371 390
    • (2005) Mechanical System Signal Processing , vol.19 , pp. 371-390
    • Yang, B.S.1    Hwang, W.W.2    Kim, D.J.3    Tan, A.C.4
  • 53
    • 22344448898 scopus 로고    scopus 로고
    • Cavitations detection of butterfly valve using support vector machines
    • B.S. Yang, W.W. Hwang, M.H. Ko, and S.J. Lee Cavitations detection of butterfly valve using support vector machines Journal of sound and vibration 287 1-2 2005 25 43
    • (2005) Journal of Sound and Vibration , vol.287 , Issue.12 , pp. 25-43
    • Yang, B.S.1    Hwang, W.W.2    Ko, M.H.3    Lee, S.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.