메뉴 건너뛰기




Volumn 64, Issue 3, 2015, Pages 861-868

Fuzzy Classification With Restricted Boltzman Machines and Echo-State Networks for Predicting Potential Railway Door System Failures

Author keywords

Discrete event diagnostic data; Echo state networks; failure prediction; fuzzy sets; railway door system failures; restricted Boltzman machines

Indexed keywords

CLASSIFICATION (OF INFORMATION); FORECASTING; FUZZY SETS; FUZZY SYSTEMS; RAILROAD ROLLING STOCK; RAILROADS; SYSTEMS ENGINEERING;

EID: 85027924373     PISSN: 00189529     EISSN: None     Source Type: Journal    
DOI: 10.1109/TR.2015.2424213     Document Type: Article
Times cited : (30)

References (39)
  • 1
    • 84891599481 scopus 로고    scopus 로고
    • Predicting potential railway operational disruptions with echo state networks
    • O. Fink, A. Nash, and U. Weidmann, "Predicting potential railway operational disruptions with Echo state networks," Transport. Res. Record: J. Transport. Res. Board, vol. 2374, no. 1, pp. 66-72, 2013.
    • (2013) Transport. Res. Record: J. Transport. Res. Board , vol.2374 , Issue.1 , pp. 66-72
    • Fink, O.1    Nash, A.2    Weidmann, U.3
  • 4
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing condition-based maintenance
    • A. K. S. Jardine, D. Lin, and D. Banjevic, "A review on machinery diagnostics and prognostics implementing condition-based maintenance," Mech. Syst. Signal Process., vol. 20, no. 7, pp. 1483-1510, 2006.
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 5
    • 34249753618 scopus 로고
    • Support-vector networks
    • C. Cortes and V. Vapnik, "Support-Vector networks," Mach. Learn., vol. 20, no. 3, pp. 273-297, 1995.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing
    • V. Sugumaran, V. Muralidharan, and K. Ramachandran, "Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing," Mech. Syst. Signal Process., vol. 21, no. 2, pp. 930-942, 2007.
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.2 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.3
  • 7
    • 10244281137 scopus 로고    scopus 로고
    • Advanced engine diagnostics using artificial neural networks
    • S. O. Ogaji and R. Singh, "Advanced engine diagnostics using artificial neural networks," Appl. Soft Comput., vol. 3, no. 3, pp. 259-271, 2003.
    • (2003) Appl. Soft Comput. , vol.3 , Issue.3 , pp. 259-271
    • Ogaji, S.O.1    Singh, R.2
  • 8
    • 77953323622 scopus 로고    scopus 로고
    • A neural network approach for remaining useful life prediction utilizing both failure and suspension histories
    • Z. Tian, L. Wong, and N. Safaei, "A neural network approach for remaining useful life prediction utilizing both failure and suspension histories," Mech. Syst. Signal Process., vol. 24, no. 5, pp. 1542-1555, 2010.
    • (2010) Mech. Syst. Signal Process. , vol.24 , Issue.5 , pp. 1542-1555
    • Tian, Z.1    Wong, L.2    Safaei, N.3
  • 9
    • 83255176824 scopus 로고    scopus 로고
    • Optimum parameters for fault detection and diagnosis system of batch reaction using multiple neural networks
    • W. L. Tan, N. M. Nor, M. Z. A. Bakar, Z. Ahmad, and S. A. Sata, "Optimum parameters for fault detection and diagnosis system of batch reaction using multiple neural networks," J. Loss Prevent. Process Ind., vol. 25, no. 1, pp. 138-141, 2012.
    • (2012) J. Loss Prevent. Process Ind. , vol.25 , Issue.1 , pp. 138-141
    • Tan, W.L.1    Nor, N.M.2    Bakar, M.Z.A.3    Ahmad, Z.4    Sata, S.A.5
  • 10
    • 85028228970 scopus 로고    scopus 로고
    • Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach
    • Z. N. S. Vanini, K. Khorasani, and N. Meskin, "Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach," Inf. Sci., no. 0, 2013.
    • (2013) Inf. Sci.
    • Vanini, Z.N.S.1    Khorasani, K.2    Meskin, N.3
  • 11
    • 77956616296 scopus 로고    scopus 로고
    • Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization
    • Q. Wu and R. Law, "Complex system fault diagnosis based on a fuzzy robust wavelet support vector classifier and an adaptive Gaussian particle swarm optimization," Inf. Sci., vol. 180, no. 23, pp. 4514-4528, 2010.
    • (2010) Inf. Sci. , vol.180 , Issue.23 , pp. 4514-4528
    • Wu, Q.1    Law, R.2
  • 12
    • 84870251618 scopus 로고    scopus 로고
    • Soft computing approach to fault diagnosis of centrifugal pump
    • N. Sakthivel, B. B. Nair, and V. Sugumaran, "Soft computing approach to fault diagnosis of centrifugal pump," Appl. Soft Comput., vol. 12, no. 5, pp. 1574-1581, 2012.
    • (2012) Appl. Soft Comput. , vol.12 , Issue.5 , pp. 1574-1581
    • Sakthivel, N.1    Nair, B.B.2    Sugumaran, V.3
  • 13
    • 84881663866 scopus 로고    scopus 로고
    • A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on {ANN} and support vector machine with hyper-parameters optimization
    • A. Azadeh, M. Saberi, A. Kazem, V. Ebrahimipour, A. Nourmohammadzadeh, and Z. Saberi, "A flexible algorithm for fault diagnosis in a centrifugal pump with corrupted data and noise based on {ANN} and support Vector machine with hyper-parameters optimization," Appl. Soft Comput., vol. 13, no. 3, pp. 1478-1485, 2013.
    • (2013) Appl. Soft Comput. , vol.13 , Issue.3 , pp. 1478-1485
    • Azadeh, A.1    Saberi, M.2    Kazem, A.3    Ebrahimipour, V.4    Nourmohammadzadeh, A.5    Saberi, Z.6
  • 14
    • 84885095960 scopus 로고    scopus 로고
    • Offline and online fault detection and diagnosis of induction motors using a hybrid soft computing model
    • M. Seera, C. P. Lim, D. Ishak, and H. Singh, "Offline and online fault detection and diagnosis of induction motors using a hybrid soft computing model," Appl. Soft Comput., vol. 13, no. 12, pp. 4493-4507, 2013.
    • (2013) Appl. Soft Comput. , vol.13 , Issue.12 , pp. 4493-4507
    • Seera, M.1    Lim, C.P.2    Ishak, D.3    Singh, H.4
  • 17
    • 34250713480 scopus 로고    scopus 로고
    • Failure analysis and diagnostics for railway trackside equipment
    • F. P. G. Marquez, P. Weston, and C. Roberts, "Failure analysis and diagnostics for railway trackside equipment," Eng. Failure Anal., vol. 14, no. 8, pp. 1411-1426, 2007.
    • (2007) Eng. Failure Anal. , vol.14 , Issue.8 , pp. 1411-1426
    • Marquez, F.P.G.1    Weston, P.2    Roberts, C.3
  • 18
    • 39049085335 scopus 로고    scopus 로고
    • Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems
    • J. Chen, C. Roberts, and P. Weston, "Fault detection and diagnosis for railway track circuits using neuro-fuzzy systems," Control Eng. Practice, vol. 16, no. 5, pp. 585-596, 2008.
    • (2008) Control Eng. Practice , vol.16 , Issue.5 , pp. 585-596
    • Chen, J.1    Roberts, C.2    Weston, P.3
  • 19
    • 73849124314 scopus 로고    scopus 로고
    • Neural network models to anticipate failures of airport ground transportation vehicle doors
    • A. E. Smith, D. W. Coit, and L. Yun-Chia, "Neural network models to anticipate failures of airport ground transportation vehicle doors," IEEE Trans. Autom. Sci. Eng., vol. 7, no. 1, pp. 183-188, 2010.
    • (2010) IEEE Trans. Autom. Sci. Eng. , vol.7 , Issue.1 , pp. 183-188
    • Smith, A.E.1    Coit, D.W.2    Yun-Chia, L.3
  • 21
    • 84878930351 scopus 로고    scopus 로고
    • Predicting time series of railway speed restrictions with time-dependent machine learning techniques
    • O. Fink, E. Zio, and U. Weidmann, "Predicting time series of railway speed restrictions with time-dependent machine learning techniques," Expert Syst. Applicat., vol. 40, no. 15, pp. 6033-6040, 2013.
    • (2013) Expert Syst. Applicat. , vol.40 , Issue.15 , pp. 6033-6040
    • Fink, O.1    Zio, E.2    Weidmann, U.3
  • 22
    • 84900032120 scopus 로고    scopus 로고
    • Extreme learning machines for predicting operation disruption events in railway systems
    • Amsterdam, The Netherlands, Sep.
    • O. Fink, E. Zio, and U. Weidmann, "Extreme learning machines for predicting operation disruption events in railway systems," in Proc. Eur. Safety and Reliability Conf. (ESREL), Amsterdam, The Netherlands, Sep. 2013.
    • (2013) Proc. Eur. Safety and Reliability Conf. (ESREL)
    • Fink, O.1    Zio, E.2    Weidmann, U.3
  • 23
    • 84884786395 scopus 로고    scopus 로고
    • Predicting component reliability and level of degradation with complex-valued neural networks
    • O. Fink, E. Zio, and U. Weidmann, "Predicting Component reliability and level of degradation with complex-valued neural networks," Rel. Eng. Syst. Safety, vol. 121, no. 0, pp. 198-206, 2014.
    • (2014) Rel. Eng. Syst. Safety , vol.121 , pp. 198-206
    • Fink, O.1    Zio, E.2    Weidmann, U.3
  • 24
    • 0015558134 scopus 로고
    • Outline of a new approach to the analysis of complex systems and decision processes
    • L. A. Zadeh, "Outline of a new approach to the analysis of complex systems and decision processes," IEEE Trans. Syst., Man, Cybern., vol. SMC-3, no. 1, pp. 28-44, 1973.
    • (1973) IEEE Trans. Syst., Man, Cybern. , vol.SMC-3 , Issue.1 , pp. 28-44
    • Zadeh, L.A.1
  • 25
    • 0001578518 scopus 로고
    • A learning algorithmfor boltzmannmachines
    • D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, "A learning algorithmfor Boltzmannmachines," Cognit. Sci., vol. 9, no. 1, pp. 147-169, 1985.
    • (1985) Cognit. Sci. , vol.9 , Issue.1 , pp. 147-169
    • Ackley, D.H.1    Hinton, G.E.2    Sejnowski, T.J.3
  • 26
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • G. Hinton, "A practical guide to training restricted Boltzmann machines," Momentum, vol. 9, no. 1, 2010.
    • (2010) Momentum , vol.9 , Issue.1
    • Hinton, G.1
  • 27
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • G. E. Hinton, "Training products of experts by minimizing contrastive divergence," Neural Computat., vol. 14, no. 8, pp. 1771-1800, 2002.
    • (2002) Neural Computat. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 30
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication
    • H. Jaeger and H. Haas, "Harnessing nonlinearity: Predicting chaotic systems and saving energy in wireless communication," Science, vol. 304, no. 5667, pp. 78-80, 2004.
    • (2004) Science , vol.304 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 32
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and applications of echo state networks with leaky-integrator neurons
    • H. Jaeger, M. Lukosevicius, D. Popovici, and U. Siewert, "Optimization and applications of Echo state networks with leaky-integrator neurons," Neural Netw., vol. 20, no. 3, pp. 335-352, 2007.
    • (2007) Neural Netw. , vol.20 , Issue.3 , pp. 335-352
    • Jaeger, H.1    Lukosevicius, M.2    Popovici, D.3    Siewert, U.4
  • 34
    • 84872502995 scopus 로고    scopus 로고
    • Berlin, Germany: Springer, Lecture Notes in Computer Science, ch. 36
    • M. Lukosevicius, A Practical Guide to Applying Echo State Networks. Berlin, Germany: Springer, 2012, vol. 7700, Lecture Notes in Computer Science, ch. 36, pp. 659-686.
    • (2012) A Practical Guide to Applying Echo State Networks , vol.7700 , pp. 659-686
    • Lukosevicius, M.1
  • 36
    • 84883818064 scopus 로고    scopus 로고
    • Anticipating railway operation disruption events based on the analysis of discrete-event diagnostic data
    • O. Fink, E. Zio, and U. Weidmann, "Anticipating railway operation disruption events based on the analysis of discrete-event diagnostic data," Chem. Eng., vol. 33, 2013.
    • (2013) Chem. Eng. , vol.33
    • Fink, O.1    Zio, E.2    Weidmann, U.3
  • 37
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • A. E. Hoerl and R. W. Kennard, "Ridge regression: Biased estimation for nonorthogonal problems," Technometrics, vol. 12, no. 1, pp. 55-67, 1970.
    • (1970) Technometrics , vol.12 , Issue.1 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 38
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Y. Bengio, "Gradient-based optimization of hyperparameters," Neural Computat., vol. 12, no. 8, pp. 1889-1900, 2000.
    • (2000) Neural Computat. , vol.12 , Issue.8 , pp. 1889-1900
    • Bengio, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.