메뉴 건너뛰기




Volumn 74, Issue 17, 2011, Pages 2941-2952

Feature selection for high-dimensional machinery fault diagnosis data using multiple models and Radial Basis Function networks

Author keywords

Binary search; Fault diagnosis; Feature selection; Radial basis function networks; Sequential backward search

Indexed keywords

BINARY SEARCH; CHI-SQUARED; CLASS SEPARABILITY; CLASSIFICATION METHODS; CURSE OF DIMENSIONALITY; DATA VARIANCE; FILTER MODEL; FISHER SCORE; FREQUENCY FEATURES; GAIN RATIO; HIGH-DIMENSIONAL; HYBRID MODEL; INFORMATION GAIN; INPUT FEATURES; MACHINERY FAULTS; MULTIPLE FEATURES; MULTIPLE MODELS; PEARSON CORRELATION COEFFICIENTS; RADIAL BASIS FUNCTION CLASSIFICATIONS; RADIAL BASIS FUNCTIONS; RELIEF ALGORITHM; SEQUENTIAL BACKWARD SEARCH; VARIABLE RANKING; WEIGHTED VOTING; WRAPPER MODEL;

EID: 80052944609     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.03.043     Document Type: Article
Times cited : (91)

References (58)
  • 1
    • 0031148143 scopus 로고    scopus 로고
    • Supervision, fault-detection and fault-diagnosis methods-an introduction
    • Isermann R. Supervision, fault-detection and fault-diagnosis methods-an introduction. Control Engineering Practice 1997, 5:639-652.
    • (1997) Control Engineering Practice , vol.5 , pp. 639-652
    • Isermann, R.1
  • 2
    • 0348197187 scopus 로고    scopus 로고
    • Classification of gear faults using cumulants and the radial basis function network
    • Lai W., Tse P.W., Zhang G., Shi T. Classification of gear faults using cumulants and the radial basis function network. Mechanical Systems and Signal Processing 2004, 18:381-389.
    • (2004) Mechanical Systems and Signal Processing , vol.18 , pp. 381-389
    • Lai, W.1    Tse, P.W.2    Zhang, G.3    Shi, T.4
  • 3
    • 0036501528 scopus 로고    scopus 로고
    • Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where 'unknown' faults may occur
    • Li Y., Pont M.J., Jones N.B. Improving the performance of radial basis function classifiers in condition monitoring and fault diagnosis applications where 'unknown' faults may occur. Pattern Recognition Letters 2002, 23:569-577.
    • (2002) Pattern Recognition Letters , vol.23 , pp. 569-577
    • Li, Y.1    Pont, M.J.2    Jones, N.B.3
  • 4
    • 31044444738 scopus 로고    scopus 로고
    • Support vector machines-based fault diagnosis for turbo-pump rotor
    • Yuan S., Chu F. Support vector machines-based fault diagnosis for turbo-pump rotor. Mechanical Systems and Signal Processing 2006, 20:939-952.
    • (2006) Mechanical Systems and Signal Processing , vol.20 , pp. 939-952
    • Yuan, S.1    Chu, F.2
  • 5
  • 6
    • 38249012378 scopus 로고
    • Fault detection and diagnosis in low speed rolling element bearings part II: the use of nearest neighbour classification
    • Mechefske C.K., Mathew J. Fault detection and diagnosis in low speed rolling element bearings part II: the use of nearest neighbour classification. Mechanical Systems and Signal Processing 1992, 6:309-316.
    • (1992) Mechanical Systems and Signal Processing , vol.6 , pp. 309-316
    • Mechefske, C.K.1    Mathew, J.2
  • 7
    • 80052917353 scopus 로고    scopus 로고
    • Year. Toward optimal feature selection, in: Proceedings of International Conference on Machine Learning
    • D. Koller, M. Sahami, Year. Toward optimal feature selection, in: Proceedings of International Conference on Machine Learning, 1996, pp. 284-292.
    • (1996)
    • Koller, D.1    Sahami, M.2
  • 9
    • 33846798101 scopus 로고    scopus 로고
    • Subspace-based gearbox condition monitoring by kernel principal component analysis
    • He Q., Kong F., Yan R. Subspace-based gearbox condition monitoring by kernel principal component analysis. Mechanical Systems and Signal Processing 2007, 21:1755-1772.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 1755-1772
    • He, Q.1    Kong, F.2    Yan, R.3
  • 10
    • 79954592396 scopus 로고    scopus 로고
    • An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognition
    • Trendafilova I. An automated procedure for detection and identification of ball bearing damage using multivariate statistics and pattern recognition. Mechanical Systems and Signal Processing 2010, 24:1858-1869.
    • (2010) Mechanical Systems and Signal Processing , vol.24 , pp. 1858-1869
    • Trendafilova, I.1
  • 12
    • 4644283741 scopus 로고    scopus 로고
    • A Study of Diesel Engine Acoustic Characteristics
    • Ph. D. Thesis, University of Manchester,
    • W. Li, A Study of Diesel Engine Acoustic Characteristics, Ph. D. Thesis, University of Manchester, 2000.
    • (2000)
    • Li, W.1
  • 14
    • 30344441829 scopus 로고    scopus 로고
    • Fault recognition method for speed-up and speed-down process of rotating machinery based on independent component analysis and Factorial Hidden Markov Model
    • Li Z., He Y., Chu F., Han J., Hao W. Fault recognition method for speed-up and speed-down process of rotating machinery based on independent component analysis and Factorial Hidden Markov Model. Journal of Sound and Vibration 2006, 291:60-71.
    • (2006) Journal of Sound and Vibration , vol.291 , pp. 60-71
    • Li, Z.1    He, Y.2    Chu, F.3    Han, J.4    Hao, W.5
  • 15
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using decision tree and classification through proximal support vector machine for fault diagnosis of roller bearing
    • Sugumaran V., Muralidharan V., Ramachandran K.I. Feature selection using decision tree and classification through proximal support vector machine for fault diagnosis of roller bearing. Mechanical Systems and Signal Processing 2007, 21:930-942.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.I.3
  • 17
    • 0035254604 scopus 로고    scopus 로고
    • An intelligent system for grinding wheel condition monitoring
    • Lezanski P. An intelligent system for grinding wheel condition monitoring. Journal of Materials Processing Technology 2001, 109:258-263.
    • (2001) Journal of Materials Processing Technology , vol.109 , pp. 258-263
    • Lezanski, P.1
  • 18
    • 0018093701 scopus 로고
    • Computer aided feature selection for enhanced analogue system fault location
    • Varghese K.C., Williams J.H., Towill D.R. Computer aided feature selection for enhanced analogue system fault location. Pattern Recognition 1978, 10:265-280.
    • (1978) Pattern Recognition , vol.10 , pp. 265-280
    • Varghese, K.C.1    Williams, J.H.2    Towill, D.R.3
  • 19
    • 33750481498 scopus 로고    scopus 로고
    • Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors
    • Widodo A., Yang B.-S., Han T. Combination of independent component analysis and support vector machines for intelligent faults diagnosis of induction motors. Expert Systems with Application 2007, 32:299-312.
    • (2007) Expert Systems with Application , vol.32 , pp. 299-312
    • Widodo, A.1    Yang, B.-S.2    Han, T.3
  • 20
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
    • Jack L.B., Nandi A.K. Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms. Mechinical Systems and Signal Processing 2002, 16:373-390.
    • (2002) Mechinical Systems and Signal Processing , vol.16 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 21
    • 33846837272 scopus 로고    scopus 로고
    • Fault diagnosis based on particle swarm optimisation and support vector machines
    • Yuan S.-F., Chu F.-L. Fault diagnosis based on particle swarm optimisation and support vector machines. Mechinical Systems and Signal Processing 2007, 21:1787-1798.
    • (2007) Mechinical Systems and Signal Processing , vol.21 , pp. 1787-1798
    • Yuan, S.-F.1    Chu, F.-L.2
  • 23
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., John G.H. Wrappers for feature subset selection. Artificial Intelligence 1997, 97:273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 25
    • 80052955390 scopus 로고
    • Intrusion Detection: The Application of Input selection, a Comparison of Algorithm, and the Application of a Wide Area Network Analyzer, Master Thesis, University of California
    • J. Doak, Intrusion Detection: The Application of Input selection, a Comparison of Algorithm, and the Application of a Wide Area Network Analyzer, Master Thesis, University of California, 1992.
    • (1992)
    • Doak, J.1
  • 26
    • 33751002948 scopus 로고    scopus 로고
    • A novel feature selection approach: combining feature wrappers and filters
    • Uncu O., Turksen I.B. A novel feature selection approach: combining feature wrappers and filters. Information Sciences 2007, 177:449-466.
    • (2007) Information Sciences , vol.177 , pp. 449-466
    • Uncu, O.1    Turksen, I.B.2
  • 27
    • 0017535866 scopus 로고
    • A branch and bound algorithm for feature subset selection
    • Narendra P.M., Fukunaga K. A branch and bound algorithm for feature subset selection. IEEE Transactions on Computers 1977, C-26:917-922.
    • (1977) IEEE Transactions on Computers , vol.C-26 , pp. 917-922
    • Narendra, P.M.1    Fukunaga, K.2
  • 28
    • 0028446271 scopus 로고
    • Genetic algorithms: a survey
    • Srinivas M., Patnaik L.M. Genetic algorithms: a survey. Computer 1994, 17-26.
    • (1994) Computer , pp. 17-26
    • Srinivas, M.1    Patnaik, L.M.2
  • 29
    • 0033640901 scopus 로고    scopus 로고
    • Comparison of algorithms that select features for pattern classifiers
    • Kudo M., Sklansky J. Comparison of algorithms that select features for pattern classifiers. Pattern Recognition 2000, 33:25-41.
    • (2000) Pattern Recognition , vol.33 , pp. 25-41
    • Kudo, M.1    Sklansky, J.2
  • 30
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • Liu H., Yu L. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering 2005, 17:491-502.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 31
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • Dash M., Liu H. Feature selection for classification. Intelligent Data Analysis 1997, 1:131-156.
    • (1997) Intelligent Data Analysis , vol.1 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 35
    • 34047138318 scopus 로고    scopus 로고
    • Combining SVMs with various feature selection strategies
    • Springer, Berlin/Heidelberg
    • Chen Y.-W., Lin C.-J. Combining SVMs with various feature selection strategies. Studies in Fuzziness and Soft Computing 2006, Springer, Berlin/Heidelberg.
    • (2006) Studies in Fuzziness and Soft Computing
    • Chen, Y.-W.1    Lin, C.-J.2
  • 36
    • 80052923369 scopus 로고    scopus 로고
    • Combination of feature selection approaches with SVM in credit scoring
    • F.L. Chen, F.C. Li, Combination of feature selection approaches with SVM in credit scoring, Expert Systems with Applications, 2009.
    • (2009) Expert Systems with Applications
    • Chen, F.L.1    Li, F.C.2
  • 37
    • 33646099818 scopus 로고    scopus 로고
    • FS_SFS: a novel feature selection method for support vector machines
    • Liu Y., Zheng Y.F. FS_SFS: a novel feature selection method for support vector machines. Pattern Recognition 2006, 39:1333-1345.
    • (2006) Pattern Recognition , vol.39 , pp. 1333-1345
    • Liu, Y.1    Zheng, Y.F.2
  • 39
    • 33845318257 scopus 로고
    • Laboratory tests of sampling techniques: comment and rejoinders
    • Banks S., Meier N.C., Burke C.J. Laboratory tests of sampling techniques: comment and rejoinders. Public Opinion Quarterly 1947, 12:316-324.
    • (1947) Public Opinion Quarterly , vol.12 , pp. 316-324
    • Banks, S.1    Meier, N.C.2    Burke, C.J.3
  • 45
    • 1942503972 scopus 로고    scopus 로고
    • Application of RBF neural network to fault classification and location in transmission lines
    • Transmission and Distribution
    • R.N. Mahanty, P.B.D. Gupta, Application of RBF neural network to fault classification and location in transmission lines, in: IEE Proceedings of Generation, Transmission and Distribution, vol. 151, 2004, pp. 201-212.
    • (2004) IEE Proceedings of Generation , vol.151 , pp. 201-212
    • Mahanty, R.N.1    Gupta, P.B.D.2
  • 48
  • 50
    • 0036089653 scopus 로고    scopus 로고
    • Year. Comparison of MLP and RBF neural networks using deviation signals for on-line identification of a synchronous generator
    • New York
    • J.-W. Park, R.G. Harley, G.K. Venayagamoorthy, Year. Comparison of MLP and RBF neural networks using deviation signals for on-line identification of a synchronous generator, in: Proceedings of IEEE Power Engineering Society Winter Meeting, New York, 2002, pp. 274-279.
    • (2002) Proceedings of IEEE Power Engineering Society Winter Meeting , pp. 274-279
    • Park, J.-W.1    Harley, R.G.2    Venayagamoorthy, G.K.3
  • 51
    • 0024991997 scopus 로고
    • Networks and the best approximation property
    • Girosi F., Poggio F. Networks and the best approximation property. Biological Cybernetics 1990, 63:169-176.
    • (1990) Biological Cybernetics , vol.63 , pp. 169-176
    • Girosi, F.1    Poggio, F.2
  • 53
    • 33947367403 scopus 로고    scopus 로고
    • An evaluation of the potential offered by a relevance vector classifier in machinery fault diagnosis
    • Zhang K., Li Y., Fan Y., Gu F., Ball A. An evaluation of the potential offered by a relevance vector classifier in machinery fault diagnosis. International Journal of COMADEM 2006, 9:35-40.
    • (2006) International Journal of COMADEM , vol.9 , pp. 35-40
    • Zhang, K.1    Li, Y.2    Fan, Y.3    Gu, F.4    Ball, A.5
  • 54
    • 0003881033 scopus 로고
    • A review of rolling element bearing vibration "etection, diagnosis and prognosis"
    • I.M. Howard, A review of rolling element bearing vibration "etection, diagnosis and prognosis";, DSTO Research Report 0013, 1994.
    • (1994) DSTO Research Report 0013
    • Howard, I.M.1
  • 55
    • 0029374064 scopus 로고
    • A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineries
    • Thorsen O.V., Dalva M. A survey of faults on induction motors in offshore oil industry, petrochemical industry, gas terminals, and oil refineries. IEEE Transactions on Industry Applications 1995, 31:1186-1196.
    • (1995) IEEE Transactions on Industry Applications , vol.31 , pp. 1186-1196
    • Thorsen, O.V.1    Dalva, M.2
  • 56
    • 0028742406 scopus 로고
    • Detection and location of interturn short circuits in the stator windings of operating motors
    • Penman J., Sedding H.G., Lloyd B.A., Fink W.T. Detection and location of interturn short circuits in the stator windings of operating motors. IEEE Transactions on Energy Conversion 1994, 9:652-658.
    • (1994) IEEE Transactions on Energy Conversion , vol.9 , pp. 652-658
    • Penman, J.1    Sedding, H.G.2    Lloyd, B.A.3    Fink, W.T.4
  • 58


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.