-
1
-
-
0032786569
-
Improving support vector machine classifiers by modifying kernel functions
-
[1] Amari, S., Wu, S., Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 12 (1999), 783–789, 10.1016/S0893-6080(99)00032-5.
-
(1999)
Neural Netw.
, vol.12
, pp. 783-789
-
-
Amari, S.1
Wu, S.2
-
2
-
-
0242383468
-
Feature vector selection and projection using kernels
-
[2] Baudat, G., Anouar, F., Feature vector selection and projection using kernels. Neurocomputing 55 (2003), 21–38, 10.1016/S0925-2312(03)00429-6.
-
(2003)
Neurocomputing
, vol.55
, pp. 21-38
-
-
Baudat, G.1
Anouar, F.2
-
4
-
-
0038891993
-
Sparse on-line gaussian processes
-
[4] Csató, L., Opper, M., Sparse on-line gaussian processes. Neural Comput. 14 (2002), 641–668, 10.1162/089976602317250933.
-
(2002)
Neural Comput.
, vol.14
, pp. 641-668
-
-
Csató, L.1
Opper, M.2
-
5
-
-
0036972152
-
Reduced rank kernel ridge regression
-
[5] Cawley, G.C., Talbot, N.L.C., Reduced rank kernel ridge regression. Neural Process. Lett. 16 (2002), 293–302, 10.1023/A:1021798002258.
-
(2002)
Neural Process. Lett.
, vol.16
, pp. 293-302
-
-
Cawley, G.C.1
Talbot, N.L.C.2
-
6
-
-
34247849152
-
Training a support vector machine in the primal
-
[6] Chapelle, O., Training a support vector machine in the primal. Neural Comput. 19 (2007), 1155–1178, 10.1162/neco.2007.19.5.1155.
-
(2007)
Neural Comput.
, vol.19
, pp. 1155-1178
-
-
Chapelle, O.1
-
7
-
-
29444447147
-
Local regularization assisted orthogonal least squares regression
-
[7] Chen, S., Local regularization assisted orthogonal least squares regression. Neurocomputing 69 (2006), 559–585, 10.1016/j.neucom.2004.12.011.
-
(2006)
Neurocomputing
, vol.69
, pp. 559-585
-
-
Chen, S.1
-
8
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
[8] Chen, S., Cowan, C.N., Grant, P.M., Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2 (1991), 302–309, 10.1109/72.80341.
-
(1991)
IEEE Trans. Neural Netw.
, vol.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.N.2
Grant, P.M.3
-
9
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
[9] Cherkassky, V., Ma, Y., Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17 (2004), 113–126, 10.1016/S0893-6080(03)00169-2.
-
(2004)
Neural Netw.
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
10
-
-
84930276942
-
Improving the kernel regularized least squares method for small-sample regression
-
[10] Braga, I., Monard, M.C., Improving the kernel regularized least squares method for small-sample regression. Neurocomputing, 2014, 10.1016/j.neucom.2014.12.097.
-
(2014)
Neurocomputing
-
-
Braga, I.1
Monard, M.C.2
-
11
-
-
0035789613
-
Proximal support vector machine classifiers
-
Proc. Seventh ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD ’01, 2001: pp. 77–86. doi:10.1145/502512.502527.
-
[11] G. Fung, O.L. Mangasarian, Proximal support vector machine classifiers, in: Proc. Seventh ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD ’01, 2001: pp. 77–86. doi:10.1145/502512.502527.
-
-
-
Fung, G.1
Mangasarian, O.L.2
-
12
-
-
0033636139
-
Support vector machine classification and validation of cancer tissue samples using microarray expression data
-
[12] Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D., Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 (2000), 906–914, 10.1093/bioinformatics/16.10.906.
-
(2000)
Bioinformatics
, vol.16
, pp. 906-914
-
-
Furey, T.S.1
Cristianini, N.2
Duffy, N.3
Bednarski, D.W.4
Schummer, M.5
Haussler, D.6
-
13
-
-
34548455315
-
Significant vector learning to construct sparse kernel regression models
-
[13] Gao, J., Shi, D., Liu, X., Significant vector learning to construct sparse kernel regression models. Neural Netw. 20 (2007), 791–798, 10.1016/j.neunet.2007.03.001.
-
(2007)
Neural Netw.
, vol.20
, pp. 791-798
-
-
Gao, J.1
Shi, D.2
Liu, X.3
-
14
-
-
27744569713
-
Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
-
[14] Gold, C., Holub, A., Sollich, P., Bayesian approach to feature selection and parameter tuning for support vector machine classifiers. Neural Netw. 18 (2005), 693–701, 10.1016/j.neunet.2005.06.044.
-
(2005)
Neural Netw.
, vol.18
, pp. 693-701
-
-
Gold, C.1
Holub, A.2
Sollich, P.3
-
15
-
-
80053332419
-
Gaussian kernel optimization: complex problem and a simple solution
-
[15] Yin, J.B., Li, T., Shen, H. Bin, Gaussian kernel optimization: complex problem and a simple solution. Neurocomputing 74 (2011), 3816–3822, 10.1016/j.neucom.2011.07.017.
-
(2011)
Neurocomputing
, vol.74
, pp. 3816-3822
-
-
Yin, J.B.1
Li, T.2
Shen, H.B.3
-
16
-
-
51049096780
-
Kernel methods in machine learning
-
[16] Hofmann, T., Schölkopf, B., Smola, A.J., Kernel methods in machine learning. Ann. Stat. 36 (2008), 1171–1220, 10.1214/009053607000000677.
-
(2008)
Ann. Stat.
, vol.36
, pp. 1171-1220
-
-
Hofmann, T.1
Schölkopf, B.2
Smola, A.J.3
-
17
-
-
77952669532
-
Kernel subclass convex hull sample selection method for SVM on face recognition
-
[17] Zhou, X., Jiang, W., Tian, Y., Shi, Y., Kernel subclass convex hull sample selection method for SVM on face recognition. Neurocomputing 73 (2010), 2234–2246, 10.1016/j.neucom.2010.01.008.
-
(2010)
Neurocomputing
, vol.73
, pp. 2234-2246
-
-
Zhou, X.1
Jiang, W.2
Tian, Y.3
Shi, Y.4
-
18
-
-
33744538355
-
Hybrid approach of selecting hyperparameters of support vector machine for regression
-
[18] Jeng, J.-T., Hybrid approach of selecting hyperparameters of support vector machine for regression. IEEE Trans. Syst. Man. Cybern. B Cybern. 36 (2006), 699–709.
-
(2006)
IEEE Trans. Syst. Man. Cybern. B Cybern.
, vol.36
, pp. 699-709
-
-
Jeng, J.-T.1
-
19
-
-
21244437589
-
Sparse multinomial logistic regression: Fast algorithms and generalization bounds
-
[19] Krishnapuram, B., Carin, L., Figueiredo, M.A.T., Hartemink, A.J., Sparse multinomial logistic regression: Fast algorithms and generalization bounds. IEEE Trans. Pattern Anal. Mach. Intell. 27 (2005), 957–968, 10.1109/TPAMI.2005.127.
-
(2005)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.27
, pp. 957-968
-
-
Krishnapuram, B.1
Carin, L.2
Figueiredo, M.A.T.3
Hartemink, A.J.4
-
20
-
-
84912570342
-
Spectral clustering with the probabilistic cluster kernel
-
[20] Izquierdo-Verdiguier, E., Jenssen, R., Gomez-Chova, L., Camps-Valls, G., Spectral clustering with the probabilistic cluster kernel. Neurocomputing 149 (2015), 1299–1304, 10.1016/j.neucom.2014.08.068.
-
(2015)
Neurocomputing
, vol.149
, pp. 1299-1304
-
-
Izquierdo-Verdiguier, E.1
Jenssen, R.2
Gomez-Chova, L.3
Camps-Valls, G.4
-
21
-
-
84943393747
-
A Practical Guide to Support Vector Classification
-
[21] Chih-Wei Hsu, C.-J.L., Chang, Chih-Chung, A Practical Guide to Support Vector Classification. BJU Int. 101 (2008), 1396–1400, 10.1177/02632760022050997.
-
(2008)
BJU Int.
, vol.101
, pp. 1396-1400
-
-
Chih-Wei Hsu, C.-J.L.1
Chang, C.-C.2
-
22
-
-
48749109333
-
Particle swarm optimization for parameter determination and feature selection of support vector machines
-
[22] Lin, S.-W., Ying, K.-C., Chen, S.-C., Lee, Z.-J., Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35 (2008), 1817–1824, 10.1016/j.eswa.2007.08.088.
-
(2008)
Expert Syst. Appl.
, vol.35
, pp. 1817-1824
-
-
Lin, S.-W.1
Ying, K.-C.2
Chen, S.-C.3
Lee, Z.-J.4
-
23
-
-
84906068456
-
Robust activation function and its application: Semi-supervised kernel extreme learning method
-
[23] Liu, S., Feng, L., Xiao, Y., Wang, H., Robust activation function and its application: Semi-supervised kernel extreme learning method. Neurocomputing 144 (2014), 318–328, 10.1016/j.neucom.2014.04.041.
-
(2014)
Neurocomputing
, vol.144
, pp. 318-328
-
-
Liu, S.1
Feng, L.2
Xiao, Y.3
Wang, H.4
-
24
-
-
52649164649
-
Neural networks for variational problems in engineering
-
[24] Lopez, R., Balsa-Canto, E., Oñate, E., Neural networks for variational problems in engineering. Int. J. Numer. Methods Eng. 75 (2008), 1341–1360, 10.1002/nme.2304.
-
(2008)
Int. J. Numer. Methods Eng.
, vol.75
, pp. 1341-1360
-
-
Lopez, R.1
Balsa-Canto, E.2
Oñate, E.3
-
25
-
-
84906064923
-
Feature selection for least squares projection twin support vector machine
-
[25] Guo, J., Yi, P., Wang, R., Ye, Q., Zhao, C., Feature selection for least squares projection twin support vector machine. Neurocomputing 144 (2014), 174–183, 10.1016/j.neucom.2014.05.040.
-
(2014)
Neurocomputing
, vol.144
, pp. 174-183
-
-
Guo, J.1
Yi, P.2
Wang, R.3
Ye, Q.4
Zhao, C.5
-
26
-
-
84956628443
-
J, Predicting time series with support vector machines, Artif
-
[26] Müller, K., Smola, A., Rätsch, G., Schölkopf, B., J, Predicting time series with support vector machines, Artif. Neural Networks—ICANN’97 1327 (1997), 999–1004, 10.1007/BFb0020283.
-
(1997)
Neural Networks—ICANN’97
, vol.1327
, pp. 999-1004
-
-
Müller, K.1
Smola, A.2
Rätsch, G.3
Schölkopf, B.4
-
27
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
[27] Müller, K.R., Mika, S., Rätsch, G., Tsuda, K., Schölkopf, B., An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 12 (2001), 181–201, 10.1109/72.914517.
-
(2001)
IEEE Trans. Neural Netw.
, vol.12
, pp. 181-201
-
-
Müller, K.R.1
Mika, S.2
Rätsch, G.3
Tsuda, K.4
Schölkopf, B.5
-
28
-
-
67349259624
-
A new feature selection method on classification of medical datasets: Kernel F-score feature selection
-
[28] Polat, K., Güneş, S., A new feature selection method on classification of medical datasets: Kernel F-score feature selection. Expert Syst. Appl. 36 (2009), 10367–10373, 10.1016/j.eswa.2009.01.041.
-
(2009)
Expert Syst. Appl.
, vol.36
, pp. 10367-10373
-
-
Polat, K.1
Güneş, S.2
-
29
-
-
84896062664
-
Infinite Mixtures of Gaussian Process Experts
-
[29] Rasmussen, C.E., Ghahramani, Z., Infinite Mixtures of Gaussian Process Experts. Adv. Neural Inf. Process. Syst. 2 (2002), 881–888 〈http://books.google.com/books?hl=en&lr=&id=GbC8cqxGR7YC&oi=fnd&pg=PA881&dq=Infinite+Mixtures+of+Gaussian+Process+Experts&ots=ZvK1D34Avb&sig=7Ayuhz3bGQDumESnS_szzHhqCF8〉.
-
(2002)
Adv. Neural Inf. Process. Syst.
, vol.2
, pp. 881-888
-
-
Rasmussen, C.E.1
Ghahramani, Z.2
-
30
-
-
0038259120
-
Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space
-
[30] Rosipal, R., Trejo, L.J., Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. J. Mach. Learn. Res. 2 (2002), 97–123, 10.1162/15324430260185556.
-
(2002)
J. Mach. Learn. Res.
, vol.2
, pp. 97-123
-
-
Rosipal, R.1
Trejo, L.J.2
-
31
-
-
0032095724
-
Support vector machines for 3D object recognition
-
[31] Pontil, M., Verri, A., Support vector machines for 3D object recognition. IEEE Trans. Pattern Anal. Mach. Intell., 20, 1998, 10.1109/34.683777.
-
(1998)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.20
-
-
Pontil, M.1
Verri, A.2
-
32
-
-
33846025429
-
Kernel based symmetrical principal component analysis for face classification
-
[32] Lu, C., Zhang, C., Zhang, T., Zhang, W., Kernel based symmetrical principal component analysis for face classification. Neurocomputing 70 (2007), 904–911, 10.1016/j.neucom.2006.10.019.
-
(2007)
Neurocomputing
, vol.70
, pp. 904-911
-
-
Lu, C.1
Zhang, C.2
Zhang, T.3
Zhang, W.4
-
33
-
-
0347243182
-
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
-
[33] Schölkopf, B., Smola, A., Müller, K.-R., Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput. 10 (1998), 1299–1319, 10.1162/089976698300017467.
-
(1998)
Neural Comput.
, vol.10
, pp. 1299-1319
-
-
Schölkopf, B.1
Smola, A.2
Müller, K.-R.3
-
34
-
-
0033337021
-
-
Fisher discriminant analysis with kernels, Neural Networks Signal Process. IX, 1999. Proc. 1999 IEEE Signal Process. Soc. Work., 1999, pp. 41–48. doi:10.1109/NNSP.1999.788121
-
[34] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, Fisher discriminant analysis with kernels, Neural Networks Signal Process. IX, 1999. Proc. 1999 IEEE Signal Process. Soc. Work., 1999, pp. 41–48. doi:10.1109/NNSP.1999.788121.
-
-
-
Mika, S.1
Ratsch, G.2
Weston, J.3
Scholkopf, B.4
-
35
-
-
0032594954
-
Input space versus feature space in kernel-based methods
-
[35] Schölkopf, B., Mika, S., Burges, C.J.C., Knirsch, P., Müller, K.R., Rätsch, G., et al. Input space versus feature space in kernel-based methods. IEEE Trans. Neural Netw. 10 (1999), 1000–1017, 10.1109/72.788641.
-
(1999)
IEEE Trans. Neural Netw.
, vol.10
, pp. 1000-1017
-
-
Schölkopf, B.1
Mika, S.2
Burges, C.J.C.3
Knirsch, P.4
Müller, K.R.5
Rätsch, G.6
-
36
-
-
84865131152
-
A Generalized Representer Theorem
-
[36] Schölkopf, B., Herbrich, R., Smola, A.J., A Generalized Representer Theorem. Most 2111 (2001), 416–426, 10.1007/3-540-44581-1_27.
-
(2001)
Most
, vol.2111
, pp. 416-426
-
-
Schölkopf, B.1
Herbrich, R.2
Smola, A.J.3
-
37
-
-
84899627207
-
Locally adaptive multiple kernel clustering
-
[37] Zhang, L., Hu, X., Locally adaptive multiple kernel clustering. Neurocomputing, 2014, 10.1016/j.neucom.2013.05.064.
-
(2014)
Neurocomputing
-
-
Zhang, L.1
Hu, X.2
-
38
-
-
4043137356
-
A tutorial on support vector regression
-
[38] Smola, A.J., Schölkopf, B., A tutorial on support vector regression. Stat. Comput. 14 (2004), 199–222, 10.1023/B:STCO.0000035301.49549.88.
-
(2004)
Stat. Comput.
, vol.14
, pp. 199-222
-
-
Smola, A.J.1
Schölkopf, B.2
-
39
-
-
0142039767
-
On the optimal parameter choice for nu-support vector machines
-
[39] Steinwart, I., On the optimal parameter choice for nu-support vector machines. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2002), 1274–1284, 10.1109/TPAMI.2003.1233901.
-
(2002)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.25
, pp. 1274-1284
-
-
Steinwart, I.1
-
40
-
-
0032638628
-
Least squares support vector machine classifiers
-
[40] Vandewalle, J., Least squares support vector machine classifiers. Neural Process. Lett. 9 (1999), 293–300, 10.1023/A:1018628609742.
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Vandewalle, J.1
-
41
-
-
84896544553
-
Sparse Ridgelet Kernel Regressor and its online sequential extreme learning
-
[41] Yang, S., Yang, L., Feng, Z., Wang, M., Jiao, L., Sparse Ridgelet Kernel Regressor and its online sequential extreme learning. Neurocomputing 134 (2014), 173–180, 10.1016/j.neucom.2012.12.066.
-
(2014)
Neurocomputing
, vol.134
, pp. 173-180
-
-
Yang, S.1
Yang, L.2
Feng, Z.3
Wang, M.4
Jiao, L.5
-
42
-
-
33750095184
-
Generalized core vector machines
-
[42] Tsang, I.W.H., Kwok, J.T.Y., Zurada, J.M., Generalized core vector machines. IEEE Trans. Neural Netw. 17 (2006), 1126–1140, 10.1109/TNN.2006.878123.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, pp. 1126-1140
-
-
Tsang, I.W.H.1
Kwok, J.T.Y.2
Zurada, J.M.3
-
43
-
-
84896905787
-
Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods
-
[43] Tüfekci, P., Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int. J. Electr. Power Energy Syst. 60 (2014), 126–140, 10.1016/j.ijepes.2014.02.027.
-
(2014)
Int. J. Electr. Power Energy Syst.
, vol.60
, pp. 126-140
-
-
Tüfekci, P.1
-
44
-
-
27144556425
-
Incremental online learning in high dimensions
-
[44] Vijayakumar, S., D'Souza, A., Schaal, S., Incremental online learning in high dimensions. Neural Comput. 17 (2005), 2602–2634, 10.1162/089976605774320557.
-
(2005)
Neural Comput.
, vol.17
, pp. 2602-2634
-
-
Vijayakumar, S.1
D'Souza, A.2
Schaal, S.3
-
45
-
-
84864069214
-
Gaussian process dynamical models
-
[45] Wang, J., Fleet, D., Hertzmann, A., Gaussian process dynamical models. Adv. Neural Inf. Process. Syst., 2006, 1441–1448, 10.1109/TPAMI.2007.1167.
-
(2006)
Adv. Neural Inf. Process. Syst.
, pp. 1441-1448
-
-
Wang, J.1
Fleet, D.2
Hertzmann, A.3
-
46
-
-
0030585112
-
Using neural networks to model conditional multivariate densities
-
[46] Williams, P.M., Using neural networks to model conditional multivariate densities. Neural Comput. 8 (1996), 843–854, 10.1162/neco.1996.8.4.731.
-
(1996)
Neural Comput.
, vol.8
, pp. 843-854
-
-
Williams, P.M.1
-
47
-
-
84929224696
-
Application of kernel principal component analysis to multi-characteristic parameter design problems
-
[47] Soh, W., Kim, H., Yum, B.-J., Application of kernel principal component analysis to multi-characteristic parameter design problems. Ann. Oper. Res., 2015, 10.1007/s10479-015-1889-2.
-
(2015)
Ann. Oper. Res.
-
-
Soh, W.1
Kim, H.2
Yum, B.-J.3
-
48
-
-
33644693593
-
System reliability forecasting by support vector machines with genetic algorithms
-
[48] Pai, P.F., System reliability forecasting by support vector machines with genetic algorithms. Math. Comput. Model. 43 (2006), 262–274, 10.1016/j.mcm.2005.02.008.
-
(2006)
Math. Comput. Model.
, vol.43
, pp. 262-274
-
-
Pai, P.F.1
-
49
-
-
84879322256
-
A dynamic particle filter-support vector regression method for reliability prediction
-
[49] Wei, Z., Tao, T., ZhuoShu, D., Zio, E., A dynamic particle filter-support vector regression method for reliability prediction. Reliab. Eng. Syst. Saf. 119 (2013), 109–116, 10.1016/j.ress.2013.05.021.
-
(2013)
Reliab. Eng. Syst. Saf.
, vol.119
, pp. 109-116
-
-
Wei, Z.1
Tao, T.2
ZhuoShu, D.3
Zio, E.4
-
50
-
-
15944424353
-
Kernel Logistic Regression and the Import Vector Machine
-
[50] Zhu, J., Hastie, T., Kernel Logistic Regression and the Import Vector Machine. J. Comput. Graph. Stat. 14 (2005), 185–205, 10.1198/106186005×25619.
-
(2005)
J. Comput. Graph. Stat.
, vol.14
, pp. 185-205
-
-
Zhu, J.1
Hastie, T.2
-
51
-
-
84896548021
-
Incremental two-dimensional kernel principal component analysis
-
[51] Choi, Y., Ozawa, S., Lee, M., Incremental two-dimensional kernel principal component analysis. Neurocomputing 134 (2014), 280–288, 10.1016/j.neucom.2013.08.045.
-
(2014)
Neurocomputing
, vol.134
, pp. 280-288
-
-
Choi, Y.1
Ozawa, S.2
Lee, M.3
-
52
-
-
84897048395
-
Fast SVM Training Using Approximate Extreme Points
-
[52] Nandan, M., Khargonekar, P.P., Talathi, S.S., Fast SVM Training Using Approximate Extreme Points. J. Mach. Learn. Res. 15 (2014), 59–98 〈http://jmlr.org/papers/v15/nandan14a.html〉.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 59-98
-
-
Nandan, M.1
Khargonekar, P.P.2
Talathi, S.S.3
-
53
-
-
78149327741
-
Kernel methods for deep learning
-
[53] Cho, Y., Saul, L.K., Kernel methods for deep learning. NIPS 9 (2009), 342–350.
-
(2009)
NIPS
, vol.9
, pp. 342-350
-
-
Cho, Y.1
Saul, L.K.2
-
54
-
-
77953218689
-
Random features for large-scale kernel machines
-
doi:10.1.1.145.8736
-
[54] Rahimi, A., Recht, B., Random features for large-scale kernel machines. Adv. Neural Inf., 2007, 1–8 doi:10.1.1.145.8736.
-
(2007)
Adv. Neural Inf.
, pp. 1-8
-
-
Rahimi, A.1
Recht, B.2
-
55
-
-
84994188299
-
How to scale up kernel methods to be as good as deep neural nets
-
[55] Lu, Z., May, A., Liu, K., Garakani, A.B., Guo, D., Bellet, A., et al. How to scale up kernel methods to be as good as deep neural nets. Arxiv, 2014, 1–21.
-
(2014)
Arxiv
, pp. 1-21
-
-
Lu, Z.1
May, A.2
Liu, K.3
Garakani, A.B.4
Guo, D.5
Bellet, A.6
-
56
-
-
84870680134
-
Kernel recursive least-squares tracker for time-varying regression
-
[56] Van Vaerenbergh, S., Lazaro-Gredilla, M., Santamaria, I., Kernel recursive least-squares tracker for time-varying regression. IEEE Trans. Neural Netw. Learn. Syst. 23 (2012), 1313–1326, 10.1109/TNNLS.2012.2200500.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, pp. 1313-1326
-
-
Van Vaerenbergh, S.1
Lazaro-Gredilla, M.2
Santamaria, I.3
-
57
-
-
84865065651
-
Quantized kernel least mean square algorithm
-
[57] Chen, B., Zhao, S., Zhu, P., Principe, J.C., Quantized kernel least mean square algorithm. IEEE Trans. Neural Netw. Learn. Syst. 23 (2012), 22–32, 10.1109/TNNLS.2011.2178446.
-
(2012)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.23
, pp. 22-32
-
-
Chen, B.1
Zhao, S.2
Zhu, P.3
Principe, J.C.4
-
58
-
-
29644438050
-
Statistical Comparisons of Classifiers over Multiple Data Sets
-
[58] Demšar, J., Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7 (2006), 1–30, 10.1016/j.jecp.2010.03.005.
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demšar, J.1
|