메뉴 건너뛰기




Volumn 218, Issue , 2016, Pages 411-422

Feature vector regression with efficient hyperparameters tuning and geometric interpretation

Author keywords

Computational complexity; Feature Vector Regression; Feature vector selection; Hyperparameters tuning; Kernel method; Prediction; Regression

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPUTATIONAL COMPLEXITY; FORECASTING; LEARNING SYSTEMS; OPTIMIZATION; REGRESSION ANALYSIS; VECTOR SPACES; VECTORS;

EID: 84994128794     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.08.093     Document Type: Article
Times cited : (11)

References (58)
  • 1
    • 0032786569 scopus 로고    scopus 로고
    • Improving support vector machine classifiers by modifying kernel functions
    • [1] Amari, S., Wu, S., Improving support vector machine classifiers by modifying kernel functions. Neural Netw. 12 (1999), 783–789, 10.1016/S0893-6080(99)00032-5.
    • (1999) Neural Netw. , vol.12 , pp. 783-789
    • Amari, S.1    Wu, S.2
  • 2
    • 0242383468 scopus 로고    scopus 로고
    • Feature vector selection and projection using kernels
    • [2] Baudat, G., Anouar, F., Feature vector selection and projection using kernels. Neurocomputing 55 (2003), 21–38, 10.1016/S0925-2312(03)00429-6.
    • (2003) Neurocomputing , vol.55 , pp. 21-38
    • Baudat, G.1    Anouar, F.2
  • 3
  • 4
    • 0038891993 scopus 로고    scopus 로고
    • Sparse on-line gaussian processes
    • [4] Csató, L., Opper, M., Sparse on-line gaussian processes. Neural Comput. 14 (2002), 641–668, 10.1162/089976602317250933.
    • (2002) Neural Comput. , vol.14 , pp. 641-668
    • Csató, L.1    Opper, M.2
  • 5
    • 0036972152 scopus 로고    scopus 로고
    • Reduced rank kernel ridge regression
    • [5] Cawley, G.C., Talbot, N.L.C., Reduced rank kernel ridge regression. Neural Process. Lett. 16 (2002), 293–302, 10.1023/A:1021798002258.
    • (2002) Neural Process. Lett. , vol.16 , pp. 293-302
    • Cawley, G.C.1    Talbot, N.L.C.2
  • 6
    • 34247849152 scopus 로고    scopus 로고
    • Training a support vector machine in the primal
    • [6] Chapelle, O., Training a support vector machine in the primal. Neural Comput. 19 (2007), 1155–1178, 10.1162/neco.2007.19.5.1155.
    • (2007) Neural Comput. , vol.19 , pp. 1155-1178
    • Chapelle, O.1
  • 7
    • 29444447147 scopus 로고    scopus 로고
    • Local regularization assisted orthogonal least squares regression
    • [7] Chen, S., Local regularization assisted orthogonal least squares regression. Neurocomputing 69 (2006), 559–585, 10.1016/j.neucom.2004.12.011.
    • (2006) Neurocomputing , vol.69 , pp. 559-585
    • Chen, S.1
  • 8
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • [8] Chen, S., Cowan, C.N., Grant, P.M., Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw. 2 (1991), 302–309, 10.1109/72.80341.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 302-309
    • Chen, S.1    Cowan, C.N.2    Grant, P.M.3
  • 9
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • [9] Cherkassky, V., Ma, Y., Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 17 (2004), 113–126, 10.1016/S0893-6080(03)00169-2.
    • (2004) Neural Netw. , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 10
    • 84930276942 scopus 로고    scopus 로고
    • Improving the kernel regularized least squares method for small-sample regression
    • [10] Braga, I., Monard, M.C., Improving the kernel regularized least squares method for small-sample regression. Neurocomputing, 2014, 10.1016/j.neucom.2014.12.097.
    • (2014) Neurocomputing
    • Braga, I.1    Monard, M.C.2
  • 11
    • 0035789613 scopus 로고    scopus 로고
    • Proximal support vector machine classifiers
    • Proc. Seventh ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD ’01, 2001: pp. 77–86. doi:10.1145/502512.502527.
    • [11] G. Fung, O.L. Mangasarian, Proximal support vector machine classifiers, in: Proc. Seventh ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. - KDD ’01, 2001: pp. 77–86. doi:10.1145/502512.502527.
    • Fung, G.1    Mangasarian, O.L.2
  • 12
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • [12] Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D., Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16 (2000), 906–914, 10.1093/bioinformatics/16.10.906.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 13
    • 34548455315 scopus 로고    scopus 로고
    • Significant vector learning to construct sparse kernel regression models
    • [13] Gao, J., Shi, D., Liu, X., Significant vector learning to construct sparse kernel regression models. Neural Netw. 20 (2007), 791–798, 10.1016/j.neunet.2007.03.001.
    • (2007) Neural Netw. , vol.20 , pp. 791-798
    • Gao, J.1    Shi, D.2    Liu, X.3
  • 14
    • 27744569713 scopus 로고    scopus 로고
    • Bayesian approach to feature selection and parameter tuning for support vector machine classifiers
    • [14] Gold, C., Holub, A., Sollich, P., Bayesian approach to feature selection and parameter tuning for support vector machine classifiers. Neural Netw. 18 (2005), 693–701, 10.1016/j.neunet.2005.06.044.
    • (2005) Neural Netw. , vol.18 , pp. 693-701
    • Gold, C.1    Holub, A.2    Sollich, P.3
  • 15
    • 80053332419 scopus 로고    scopus 로고
    • Gaussian kernel optimization: complex problem and a simple solution
    • [15] Yin, J.B., Li, T., Shen, H. Bin, Gaussian kernel optimization: complex problem and a simple solution. Neurocomputing 74 (2011), 3816–3822, 10.1016/j.neucom.2011.07.017.
    • (2011) Neurocomputing , vol.74 , pp. 3816-3822
    • Yin, J.B.1    Li, T.2    Shen, H.B.3
  • 16
    • 51049096780 scopus 로고    scopus 로고
    • Kernel methods in machine learning
    • [16] Hofmann, T., Schölkopf, B., Smola, A.J., Kernel methods in machine learning. Ann. Stat. 36 (2008), 1171–1220, 10.1214/009053607000000677.
    • (2008) Ann. Stat. , vol.36 , pp. 1171-1220
    • Hofmann, T.1    Schölkopf, B.2    Smola, A.J.3
  • 17
    • 77952669532 scopus 로고    scopus 로고
    • Kernel subclass convex hull sample selection method for SVM on face recognition
    • [17] Zhou, X., Jiang, W., Tian, Y., Shi, Y., Kernel subclass convex hull sample selection method for SVM on face recognition. Neurocomputing 73 (2010), 2234–2246, 10.1016/j.neucom.2010.01.008.
    • (2010) Neurocomputing , vol.73 , pp. 2234-2246
    • Zhou, X.1    Jiang, W.2    Tian, Y.3    Shi, Y.4
  • 18
    • 33744538355 scopus 로고    scopus 로고
    • Hybrid approach of selecting hyperparameters of support vector machine for regression
    • [18] Jeng, J.-T., Hybrid approach of selecting hyperparameters of support vector machine for regression. IEEE Trans. Syst. Man. Cybern. B Cybern. 36 (2006), 699–709.
    • (2006) IEEE Trans. Syst. Man. Cybern. B Cybern. , vol.36 , pp. 699-709
    • Jeng, J.-T.1
  • 21
    • 84943393747 scopus 로고    scopus 로고
    • A Practical Guide to Support Vector Classification
    • [21] Chih-Wei Hsu, C.-J.L., Chang, Chih-Chung, A Practical Guide to Support Vector Classification. BJU Int. 101 (2008), 1396–1400, 10.1177/02632760022050997.
    • (2008) BJU Int. , vol.101 , pp. 1396-1400
    • Chih-Wei Hsu, C.-J.L.1    Chang, C.-C.2
  • 22
    • 48749109333 scopus 로고    scopus 로고
    • Particle swarm optimization for parameter determination and feature selection of support vector machines
    • [22] Lin, S.-W., Ying, K.-C., Chen, S.-C., Lee, Z.-J., Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst. Appl. 35 (2008), 1817–1824, 10.1016/j.eswa.2007.08.088.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 1817-1824
    • Lin, S.-W.1    Ying, K.-C.2    Chen, S.-C.3    Lee, Z.-J.4
  • 23
    • 84906068456 scopus 로고    scopus 로고
    • Robust activation function and its application: Semi-supervised kernel extreme learning method
    • [23] Liu, S., Feng, L., Xiao, Y., Wang, H., Robust activation function and its application: Semi-supervised kernel extreme learning method. Neurocomputing 144 (2014), 318–328, 10.1016/j.neucom.2014.04.041.
    • (2014) Neurocomputing , vol.144 , pp. 318-328
    • Liu, S.1    Feng, L.2    Xiao, Y.3    Wang, H.4
  • 24
    • 52649164649 scopus 로고    scopus 로고
    • Neural networks for variational problems in engineering
    • [24] Lopez, R., Balsa-Canto, E., Oñate, E., Neural networks for variational problems in engineering. Int. J. Numer. Methods Eng. 75 (2008), 1341–1360, 10.1002/nme.2304.
    • (2008) Int. J. Numer. Methods Eng. , vol.75 , pp. 1341-1360
    • Lopez, R.1    Balsa-Canto, E.2    Oñate, E.3
  • 25
    • 84906064923 scopus 로고    scopus 로고
    • Feature selection for least squares projection twin support vector machine
    • [25] Guo, J., Yi, P., Wang, R., Ye, Q., Zhao, C., Feature selection for least squares projection twin support vector machine. Neurocomputing 144 (2014), 174–183, 10.1016/j.neucom.2014.05.040.
    • (2014) Neurocomputing , vol.144 , pp. 174-183
    • Guo, J.1    Yi, P.2    Wang, R.3    Ye, Q.4    Zhao, C.5
  • 26
    • 84956628443 scopus 로고    scopus 로고
    • J, Predicting time series with support vector machines, Artif
    • [26] Müller, K., Smola, A., Rätsch, G., Schölkopf, B., J, Predicting time series with support vector machines, Artif. Neural Networks—ICANN’97 1327 (1997), 999–1004, 10.1007/BFb0020283.
    • (1997) Neural Networks—ICANN’97 , vol.1327 , pp. 999-1004
    • Müller, K.1    Smola, A.2    Rätsch, G.3    Schölkopf, B.4
  • 28
    • 67349259624 scopus 로고    scopus 로고
    • A new feature selection method on classification of medical datasets: Kernel F-score feature selection
    • [28] Polat, K., Güneş, S., A new feature selection method on classification of medical datasets: Kernel F-score feature selection. Expert Syst. Appl. 36 (2009), 10367–10373, 10.1016/j.eswa.2009.01.041.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 10367-10373
    • Polat, K.1    Güneş, S.2
  • 29
    • 84896062664 scopus 로고    scopus 로고
    • Infinite Mixtures of Gaussian Process Experts
    • [29] Rasmussen, C.E., Ghahramani, Z., Infinite Mixtures of Gaussian Process Experts. Adv. Neural Inf. Process. Syst. 2 (2002), 881–888 〈http://books.google.com/books?hl=en&lr=&id=GbC8cqxGR7YC&oi=fnd&pg=PA881&dq=Infinite+Mixtures+of+Gaussian+Process+Experts&ots=ZvK1D34Avb&sig=7Ayuhz3bGQDumESnS_szzHhqCF8〉.
    • (2002) Adv. Neural Inf. Process. Syst. , vol.2 , pp. 881-888
    • Rasmussen, C.E.1    Ghahramani, Z.2
  • 30
    • 0038259120 scopus 로고    scopus 로고
    • Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space
    • [30] Rosipal, R., Trejo, L.J., Kernel Partial Least Squares Regression in Reproducing Kernel Hilbert Space. J. Mach. Learn. Res. 2 (2002), 97–123, 10.1162/15324430260185556.
    • (2002) J. Mach. Learn. Res. , vol.2 , pp. 97-123
    • Rosipal, R.1    Trejo, L.J.2
  • 32
    • 33846025429 scopus 로고    scopus 로고
    • Kernel based symmetrical principal component analysis for face classification
    • [32] Lu, C., Zhang, C., Zhang, T., Zhang, W., Kernel based symmetrical principal component analysis for face classification. Neurocomputing 70 (2007), 904–911, 10.1016/j.neucom.2006.10.019.
    • (2007) Neurocomputing , vol.70 , pp. 904-911
    • Lu, C.1    Zhang, C.2    Zhang, T.3    Zhang, W.4
  • 33
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • [33] Schölkopf, B., Smola, A., Müller, K.-R., Nonlinear Component Analysis as a Kernel Eigenvalue Problem. Neural Comput. 10 (1998), 1299–1319, 10.1162/089976698300017467.
    • (1998) Neural Comput. , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 34
    • 0033337021 scopus 로고    scopus 로고
    • Fisher discriminant analysis with kernels, Neural Networks Signal Process. IX, 1999. Proc. 1999 IEEE Signal Process. Soc. Work., 1999, pp. 41–48. doi:10.1109/NNSP.1999.788121
    • [34] S. Mika, G. Ratsch, J. Weston, B. Scholkopf, Fisher discriminant analysis with kernels, Neural Networks Signal Process. IX, 1999. Proc. 1999 IEEE Signal Process. Soc. Work., 1999, pp. 41–48. doi:10.1109/NNSP.1999.788121.
    • Mika, S.1    Ratsch, G.2    Weston, J.3    Scholkopf, B.4
  • 36
    • 84865131152 scopus 로고    scopus 로고
    • A Generalized Representer Theorem
    • [36] Schölkopf, B., Herbrich, R., Smola, A.J., A Generalized Representer Theorem. Most 2111 (2001), 416–426, 10.1007/3-540-44581-1_27.
    • (2001) Most , vol.2111 , pp. 416-426
    • Schölkopf, B.1    Herbrich, R.2    Smola, A.J.3
  • 37
    • 84899627207 scopus 로고    scopus 로고
    • Locally adaptive multiple kernel clustering
    • [37] Zhang, L., Hu, X., Locally adaptive multiple kernel clustering. Neurocomputing, 2014, 10.1016/j.neucom.2013.05.064.
    • (2014) Neurocomputing
    • Zhang, L.1    Hu, X.2
  • 38
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • [38] Smola, A.J., Schölkopf, B., A tutorial on support vector regression. Stat. Comput. 14 (2004), 199–222, 10.1023/B:STCO.0000035301.49549.88.
    • (2004) Stat. Comput. , vol.14 , pp. 199-222
    • Smola, A.J.1    Schölkopf, B.2
  • 39
    • 0142039767 scopus 로고    scopus 로고
    • On the optimal parameter choice for nu-support vector machines
    • [39] Steinwart, I., On the optimal parameter choice for nu-support vector machines. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2002), 1274–1284, 10.1109/TPAMI.2003.1233901.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , pp. 1274-1284
    • Steinwart, I.1
  • 40
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • [40] Vandewalle, J., Least squares support vector machine classifiers. Neural Process. Lett. 9 (1999), 293–300, 10.1023/A:1018628609742.
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Vandewalle, J.1
  • 41
    • 84896544553 scopus 로고    scopus 로고
    • Sparse Ridgelet Kernel Regressor and its online sequential extreme learning
    • [41] Yang, S., Yang, L., Feng, Z., Wang, M., Jiao, L., Sparse Ridgelet Kernel Regressor and its online sequential extreme learning. Neurocomputing 134 (2014), 173–180, 10.1016/j.neucom.2012.12.066.
    • (2014) Neurocomputing , vol.134 , pp. 173-180
    • Yang, S.1    Yang, L.2    Feng, Z.3    Wang, M.4    Jiao, L.5
  • 43
    • 84896905787 scopus 로고    scopus 로고
    • Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods
    • [43] Tüfekci, P., Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int. J. Electr. Power Energy Syst. 60 (2014), 126–140, 10.1016/j.ijepes.2014.02.027.
    • (2014) Int. J. Electr. Power Energy Syst. , vol.60 , pp. 126-140
    • Tüfekci, P.1
  • 44
    • 27144556425 scopus 로고    scopus 로고
    • Incremental online learning in high dimensions
    • [44] Vijayakumar, S., D'Souza, A., Schaal, S., Incremental online learning in high dimensions. Neural Comput. 17 (2005), 2602–2634, 10.1162/089976605774320557.
    • (2005) Neural Comput. , vol.17 , pp. 2602-2634
    • Vijayakumar, S.1    D'Souza, A.2    Schaal, S.3
  • 46
    • 0030585112 scopus 로고    scopus 로고
    • Using neural networks to model conditional multivariate densities
    • [46] Williams, P.M., Using neural networks to model conditional multivariate densities. Neural Comput. 8 (1996), 843–854, 10.1162/neco.1996.8.4.731.
    • (1996) Neural Comput. , vol.8 , pp. 843-854
    • Williams, P.M.1
  • 47
    • 84929224696 scopus 로고    scopus 로고
    • Application of kernel principal component analysis to multi-characteristic parameter design problems
    • [47] Soh, W., Kim, H., Yum, B.-J., Application of kernel principal component analysis to multi-characteristic parameter design problems. Ann. Oper. Res., 2015, 10.1007/s10479-015-1889-2.
    • (2015) Ann. Oper. Res.
    • Soh, W.1    Kim, H.2    Yum, B.-J.3
  • 48
    • 33644693593 scopus 로고    scopus 로고
    • System reliability forecasting by support vector machines with genetic algorithms
    • [48] Pai, P.F., System reliability forecasting by support vector machines with genetic algorithms. Math. Comput. Model. 43 (2006), 262–274, 10.1016/j.mcm.2005.02.008.
    • (2006) Math. Comput. Model. , vol.43 , pp. 262-274
    • Pai, P.F.1
  • 49
    • 84879322256 scopus 로고    scopus 로고
    • A dynamic particle filter-support vector regression method for reliability prediction
    • [49] Wei, Z., Tao, T., ZhuoShu, D., Zio, E., A dynamic particle filter-support vector regression method for reliability prediction. Reliab. Eng. Syst. Saf. 119 (2013), 109–116, 10.1016/j.ress.2013.05.021.
    • (2013) Reliab. Eng. Syst. Saf. , vol.119 , pp. 109-116
    • Wei, Z.1    Tao, T.2    ZhuoShu, D.3    Zio, E.4
  • 50
    • 15944424353 scopus 로고    scopus 로고
    • Kernel Logistic Regression and the Import Vector Machine
    • [50] Zhu, J., Hastie, T., Kernel Logistic Regression and the Import Vector Machine. J. Comput. Graph. Stat. 14 (2005), 185–205, 10.1198/106186005×25619.
    • (2005) J. Comput. Graph. Stat. , vol.14 , pp. 185-205
    • Zhu, J.1    Hastie, T.2
  • 51
    • 84896548021 scopus 로고    scopus 로고
    • Incremental two-dimensional kernel principal component analysis
    • [51] Choi, Y., Ozawa, S., Lee, M., Incremental two-dimensional kernel principal component analysis. Neurocomputing 134 (2014), 280–288, 10.1016/j.neucom.2013.08.045.
    • (2014) Neurocomputing , vol.134 , pp. 280-288
    • Choi, Y.1    Ozawa, S.2    Lee, M.3
  • 52
    • 84897048395 scopus 로고    scopus 로고
    • Fast SVM Training Using Approximate Extreme Points
    • [52] Nandan, M., Khargonekar, P.P., Talathi, S.S., Fast SVM Training Using Approximate Extreme Points. J. Mach. Learn. Res. 15 (2014), 59–98 〈http://jmlr.org/papers/v15/nandan14a.html〉.
    • (2014) J. Mach. Learn. Res. , vol.15 , pp. 59-98
    • Nandan, M.1    Khargonekar, P.P.2    Talathi, S.S.3
  • 53
    • 78149327741 scopus 로고    scopus 로고
    • Kernel methods for deep learning
    • [53] Cho, Y., Saul, L.K., Kernel methods for deep learning. NIPS 9 (2009), 342–350.
    • (2009) NIPS , vol.9 , pp. 342-350
    • Cho, Y.1    Saul, L.K.2
  • 54
    • 77953218689 scopus 로고    scopus 로고
    • Random features for large-scale kernel machines
    • doi:10.1.1.145.8736
    • [54] Rahimi, A., Recht, B., Random features for large-scale kernel machines. Adv. Neural Inf., 2007, 1–8 doi:10.1.1.145.8736.
    • (2007) Adv. Neural Inf. , pp. 1-8
    • Rahimi, A.1    Recht, B.2
  • 55
    • 84994188299 scopus 로고    scopus 로고
    • How to scale up kernel methods to be as good as deep neural nets
    • [55] Lu, Z., May, A., Liu, K., Garakani, A.B., Guo, D., Bellet, A., et al. How to scale up kernel methods to be as good as deep neural nets. Arxiv, 2014, 1–21.
    • (2014) Arxiv , pp. 1-21
    • Lu, Z.1    May, A.2    Liu, K.3    Garakani, A.B.4    Guo, D.5    Bellet, A.6
  • 58
    • 29644438050 scopus 로고    scopus 로고
    • Statistical Comparisons of Classifiers over Multiple Data Sets
    • [58] Demšar, J., Statistical Comparisons of Classifiers over Multiple Data Sets. J. Mach. Learn. Res. 7 (2006), 1–30, 10.1016/j.jecp.2010.03.005.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.