메뉴 건너뛰기




Volumn 23, Issue 5, 2010, Pages 486-490

Multi-fault classification based on support vector machine trained by chaos particle swarm optimization

Author keywords

Chaos; Multi fault classification; Particle swarm optimization (PSO); Support vector machine (SVM)

Indexed keywords

CHAOS; CHAOS PARTICLE SWARM OPTIMIZATIONS; FAULT CLASSIFICATION; FAULT DIAGNOSIS; LEAST SQUARES SUPPORT VECTOR MACHINES; NOVEL METHODS; ROTATING MACHINE; TRAINING SUPPORT VECTOR MACHINES;

EID: 77955232331     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2010.01.004     Document Type: Article
Times cited : (107)

References (18)
  • 3
    • 0032594854 scopus 로고    scopus 로고
    • A novel approach to fault diagnosis in multicircuit transmission lines using fuzzy ARTmap neural networks
    • R.K. Aggarwal, and Q.Y. Xuan A novel approach to fault diagnosis in multicircuit transmission lines using fuzzy ARTmap neural networks IEEE Transactions on Neural Networks 10 5 1999 1214 1221
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 1214-1221
    • Aggarwal, R.K.1    Xuan, Q.Y.2
  • 4
    • 0034249467 scopus 로고    scopus 로고
    • Fault diagnosis using rough sets theory
    • L. Shen, and F.E.H. Tay Fault diagnosis using rough sets theory Computers in Industry 43 2000 61 72
    • (2000) Computers in Industry , vol.43 , pp. 61-72
    • Shen, L.1    Tay, F.E.H.2
  • 6
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V. Vapnik An overview of statistical learning theory IEEE Transaction on Neural Networks 10 5 1999 988 999
    • (1999) IEEE Transaction on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.1
  • 11
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • J. Platt Fast training of support vector machines using sequential minimal optimization B. Scholkopf, C.J.C. Burges, A.J. Smola, Advances in Kernel Methods - Support Vector Learning 1999 MIT Press Cambridge, MA 185 208
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 13
    • 0033666935 scopus 로고    scopus 로고
    • Comparing inertia weights and constriction factors in particle swarm optimization
    • IEEE Press San Diego, Piscataway
    • R.C. Eberhart, and Y. Shi Comparing inertia weights and constriction factors in particle swarm optimization Proceedings of the Congress on Evolutionary Computing 2000 IEEE Press San Diego, Piscataway 84 89
    • (2000) Proceedings of the Congress on Evolutionary Computing , pp. 84-89
    • Eberhart, R.C.1    Shi, Y.2
  • 14
    • 76549092762 scopus 로고    scopus 로고
    • Chaos optimization method and its application
    • B. Li, and W.S. Jiang Chaos optimization method and its application Control Theory and Applications 14 4 1997 613 615
    • (1997) Control Theory and Applications , vol.14 , Issue.4 , pp. 613-615
    • Li, B.1    Jiang, W.S.2
  • 15
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machine and neural networks: A market comparative study
    • Z. Huang, and H. Chen Credit rating analysis with support vector machine and neural networks: A market comparative study Decision Support Systems 37 2004 543 558
    • (2004) Decision Support Systems , vol.37 , pp. 543-558
    • Huang, Z.1    Chen, H.2
  • 16
    • 0001023715 scopus 로고    scopus 로고
    • Application of support vector machines in financial time series forecasting
    • F.E.H. Tay, and L. Cao Application of support vector machines in financial time series forecasting Omega 29 2001 309 317
    • (2001) Omega , vol.29 , pp. 309-317
    • Tay, F.E.H.1    Cao, L.2
  • 17
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • J.A.K. Suykens, and J. Vandewalle Least squares support vector machine classifiers Neural Processing Letters 9 3 1999 293 300
    • (1999) Neural Processing Letters , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 18
    • 38049123335 scopus 로고    scopus 로고
    • A hybrid particle swarm algorithm for structure and parameters optimization of feed-forward neural network
    • X.L. Tang, Y.G. Li, A hybrid particle swarm algorithm for structure and parameters optimization of feed-forward neural network, in: Fourth International Symposium on Neural Networks, LNCS, vol. 4493, 2007, pp. 213-218.
    • (2007) Fourth International Symposium on Neural Networks, LNCS , vol.4493 , pp. 213-218
    • Tang, X.L.1    Li, Y.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.