메뉴 건너뛰기




Volumn 18, Issue 3, 2004, Pages 625-644

Gear fault detection using artificial neural networks and support vector machines with genetic algorithms

Author keywords

[No Author keywords available]

Indexed keywords

FAILURE ANALYSIS; GENETIC ALGORITHMS; PARAMETER ESTIMATION; RADIAL BASIS FUNCTION NETWORKS; SIGNAL PROCESSING; VECTORS; VIBRATIONS (MECHANICAL);

EID: 0942289503     PISSN: 08883270     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0888-3270(03)00020-7     Document Type: Article
Times cited : (517)

References (31)
  • 2
    • 0034268249 scopus 로고    scopus 로고
    • Detection of gear faults by decomposition of matched differences of vibration signals
    • P.D. McFadden, Detection of gear faults by decomposition of matched differences of vibration signals, Mechanical Systems and Signal Processing 14 (2000) 805-817.
    • (2000) Mechanical Systems and Signal Processing , vol.14 , pp. 805-817
    • McFadden, P.D.1
  • 4
    • 0942280594 scopus 로고    scopus 로고
    • Special issue on gear and bearing diagnostics
    • R. B. Randall (guest Ed.), Special issue on gear and bearing diagnostics, Mechanical Systems and Signal Processing 15 (5) (2001) 317-328.
    • (2001) Mechanical Systems and Signal Processing , vol.15 , Issue.5 , pp. 317-328
    • Randall, R.B.1
  • 6
    • 0036554724 scopus 로고    scopus 로고
    • Differential diagnosis of gear and bearing faults, Transactions of the ASME
    • J. Antoni, R.B. Randall, Differential diagnosis of gear and bearing faults, Transactions of the ASME, Journal of Vibration and Acoustics 124 (2002) 165-171.
    • (2002) Journal of Vibration and Acoustics , vol.124 , pp. 165-171
    • Antoni, J.1    Randall, R.B.2
  • 10
    • 85030911971 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
    • to appear
    • B. Samanta, K.R. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using time-domain features, Mechanical Systems and Signal Processing, 2002, to appear.
    • (2002) Mechanical Systems and Signal Processing
    • Samanta, B.1    Al-Balushi, K.R.2
  • 11
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges, A tutorial on support vector machines for pattern recognition, Data mining and knowledge discovery 2 (1998) 955-974.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , pp. 955-974
    • Burges, C.J.C.1
  • 13
    • 11644275559 scopus 로고    scopus 로고
    • SVMs - A practical consequence of learning theory
    • B. Scholkopf, SVMs - a practical consequence of learning theory, IEEE Intelligent Systems 13 (1998) 18-19.
    • (1998) IEEE Intelligent Systems , vol.13 , pp. 18-19
    • Scholkopf, B.1
  • 14
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • University of Southampton, Department of electrical and computer science
    • S.R. Gunn, Support vector machines for classification and regression, Technical Report, University of Southampton, Department of electrical and computer science, 1998.
    • (1998) Technical Report
    • Gunn, S.R.1
  • 15
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • V.N. Vapnik, An overview of statistical learning theory, IEEE Transactions on Neural Networks 10 (1999) 988-1000.
    • (1999) IEEE Transactions on Neural Networks , vol.10 , pp. 988-1000
    • Vapnik, V.N.1
  • 18
    • 0033689605 scopus 로고    scopus 로고
    • Genetic algorithms for feature extraction in machine condition monitoring with vibration signals
    • L.B. Jack, A.K. Nandi, Genetic algorithms for feature extraction in machine condition monitoring with vibration signals, IEE Proceedings of Vision & Image Signal Processing 147 (2000) 205-212.
    • (2000) IEE Proceedings of Vision & Image Signal Processing , vol.147 , pp. 205-212
    • Jack, L.B.1    Nandi, A.K.2
  • 19
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
    • L.B. Jack, A.K. Nandi, Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms, Mechanical Systems and Signal Processing 16 (2002) 373-390.
    • (2002) Mechanical Systems and Signal Processing , vol.16 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 20
    • 0346609638 scopus 로고    scopus 로고
    • Use of genetic algorithm and artificial neural network for gear condition diagnostics
    • University of Manchester, UK
    • B. Samanta, K.R. Al-Balushi, S.A. Al-Araimi, Use of genetic algorithm and artificial neural network for gear condition diagnostics, Proceedings of COMADEM 2001, University of Manchester, UK, 2001, pp. 449-456.
    • (2001) Proceedings of COMADEM 2001 , pp. 449-456
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 24
    • 0006472145 scopus 로고    scopus 로고
    • Support vector machines for multi-class recognition
    • Burges, Belgium
    • J. Weston, C. Watkins, Support vector machines for multi-class recognition, Proceedings of ESANN'99, Burges, Belgium, 1999, pp. 219-224.
    • (1999) Proceedings of ESANN'99 , pp. 219-224
    • Weston, J.1    Watkins, C.2
  • 25
  • 26
    • 6344262722 scopus 로고    scopus 로고
    • Algorithmic approaches to training support vector machines: A survey
    • Belgium, Paper #ESANN2000-355
    • C. Campbell, Algorithmic approaches to training support vector machines: a survey, Proceedings of ESANN2000 Burges, Belgium, Paper #ESANN2000-355, 2000.
    • (2000) Proceedings of ESANN2000 Burges
    • Campbell, C.1
  • 27
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale SVM learning practical
    • B. Scholkopf, C.J. Burges, A. Simola (Eds.), MIT Press, Cambridge, MA, USA
    • T. Joachims, Making large-scale SVM learning practical, in: B. Scholkopf, C.J. Burges, A. Simola (Eds.), Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge, MA, USA, 1999, pp. 169-184.
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 169-184
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.