메뉴 건너뛰기




Volumn 26, Issue 9, 2012, Pages 2649-2657

Intelligent fault diagnosis of rolling bearing based on kernel neighborhood rough sets and statistical features

Author keywords

Feature selection; Intelligent fault diagnosis; Kernel method; Neighborhood rough sets

Indexed keywords

APPLICATION PROCESS; CLASSIFICATION ALGORITHM; CLASSIFICATION AND REGRESSION TREE; DATA SETS; DIAGNOSTIC APPROACH; EFFICIENT FEATURE SELECTIONS; FAULT FEATURE; FEATURE SELECTION ALGORITHM; INTELLIGENT FAULT DIAGNOSIS; KERNEL METHODS; RADIAL BASIS FUNCTIONS; ROLLING BEARINGS; ROUGH SET; SENSITIVE FEATURES; STATISTICAL FEATURES; TIME AND FREQUENCY DOMAINS;

EID: 84866458649     PISSN: 1738494X     EISSN: None     Source Type: Journal    
DOI: 10.1007/s12206-012-0716-9     Document Type: Article
Times cited : (28)

References (27)
  • 1
    • 33646534620 scopus 로고    scopus 로고
    • A review on machinery diagnostics and prognostics implementing conditionbased maintenance
    • A. K. S. Jardine, D. Lin and D. Banjevic, A review on machinery diagnostics and prognostics implementing conditionbased maintenance, Mechanical Systems and Signal Processing, 20(7) (2006) 1483-1510.
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.7 , pp. 1483-1510
    • Jardine, A.K.S.1    Lin, D.2    Banjevic, D.3
  • 2
    • 58049190180 scopus 로고    scopus 로고
    • Rotating machinery prognostics: state of the art, challenges and opportunities
    • A. Heng, S. Zhang, A. C. C. Tan and J. Mathew, Rotating machinery prognostics: state of the art, challenges and opportunities, Mechanical Systems and Signal Processing, 23(3) (2009) 724-739.
    • (2009) Mechanical Systems and Signal Processing , vol.23 , Issue.3 , pp. 724-739
    • Heng, A.1    Zhang, S.2    Tan, A.C.C.3    Mathew, J.4
  • 4
    • 84857355189 scopus 로고    scopus 로고
    • A generic probabilistic framework for structural health prognostics and uncertainty management
    • P. Wang, B. D. Youn and C. Hu, A generic probabilistic framework for structural health prognostics and uncertainty management, Mechanical Systems and Signal Processing, 28 (2012) 622-637.
    • (2012) Mechanical Systems and Signal Processing , vol.28 , pp. 622-637
    • Wang, P.1    Youn, B.D.2    Hu, C.3
  • 5
    • 84860375483 scopus 로고    scopus 로고
    • Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life
    • available online: 17-MAR-2012 DOI information: 10. 1016/j. ress. 2012. 03. 008
    • C. Hu, B. D. Youn, P. Wang and J. T. Yoon, Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life, Reliability Engineering & System Safety, available online: 17-MAR-2012 DOI information: 10. 1016/j. ress. 2012. 03. 008 (2012).
    • (2012) Reliability Engineering & System Safety
    • Hu, C.1    Youn, B.D.2    Wang, P.3    Yoon, J.T.4
  • 6
    • 58049182562 scopus 로고    scopus 로고
    • Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description
    • Y. Pan, J. Chen and L. Guo, Robust bearing performance degradation assessment method based on improved wavelet packet-support vector data description, Mechanical Systems and Signal Processing, 23(3) (2009) 669-681.
    • (2009) Mechanical Systems and Signal Processing , vol.23 , Issue.3 , pp. 669-681
    • Pan, Y.1    Chen, J.2    Guo, L.3
  • 7
    • 79251488790 scopus 로고    scopus 로고
    • Support vector data description for fusion of multiple health indicators for enhancing gearbox fault diagnosis and prognosis
    • D. Wang, P. W. Tse, W. Guo and Q. Miao, Support vector data description for fusion of multiple health indicators for enhancing gearbox fault diagnosis and prognosis, Measurement Science and Technology, 22(2) (2011) 1-13.
    • (2011) Measurement Science and Technology , vol.22 , Issue.2 , pp. 1-13
    • Wang, D.1    Tse, P.W.2    Guo, W.3    Miao, Q.4
  • 8
    • 35348983032 scopus 로고    scopus 로고
    • Early detection of fatigue damage on rolling element bearings using adapted wavelet
    • X. Chiementin, F. Bolaers and J.-P. Dron, Early detection of fatigue damage on rolling element bearings using adapted wavelet, Journal of Vibration and Acoustics, 129(4) (2007) 495-506.
    • (2007) Journal of Vibration and Acoustics , vol.129 , Issue.4 , pp. 495-506
    • Chiementin, X.1    Bolaers, F.2    Dron, J.-P.3
  • 9
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
    • B. Samanta and K. R. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using time-domain features, Mechanical Systems and Signal Processing, 17(2) (2003) 317-328.
    • (2003) Mechanical Systems and Signal Processing , vol.17 , Issue.2 , pp. 317-328
    • Samanta, B.1    Al-Balushi, K.R.2
  • 10
    • 34047275789 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension
    • J. Y. Yang and Y. Y. Zhang, Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension, Mechanical System and Signal Processing, 21(5) (2007) 2012-2024.
    • (2007) Mechanical System and Signal Processing , vol.21 , Issue.5 , pp. 2012-2024
    • Yang, J.Y.1    Zhang, Y.Y.2
  • 11
    • 37349112155 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling element bearing based on SVMs and statistical characteristic
    • Oct. 15-18, Atlanta, GA
    • J. Yang, Y. Zhang and Y. Zhu, Intelligent fault diagnosis of rolling element bearing based on SVMs and statistical characteristic, The 2007 ASME Manufacturing Science and Engineering Conference. Oct. 15-18, Atlanta, GA.
    • The 2007 ASME Manufacturing Science and Engineering Conference
    • Yang, J.1    Zhang, Y.2    Zhu, Y.3
  • 12
    • 67349249907 scopus 로고    scopus 로고
    • Machinery fault diagnosis using supervised manifold learning
    • Q. Jiang, M. Jia and J. Hu et al., Machinery fault diagnosis using supervised manifold learning. Mechanical Systems and Signal Processing, 23(7) (2009) 2301-2311.
    • (2009) Mechanical Systems and Signal Processing , vol.23 , Issue.7 , pp. 2301-2311
    • Jiang, Q.1    Jia, M.2    Hu, J.3
  • 13
    • 0037332841 scopus 로고    scopus 로고
    • Rough set methods in feature selection and recognition
    • R. W. Swiniarski and A. Skowron, Rough set methods in feature selection and recognition, Pattern Recognition Letters, 24(6) (2003) 833-849.
    • (2003) Pattern Recognition Letters , vol.24 , Issue.6 , pp. 833-849
    • Swiniarski, R.W.1    Skowron, A.2
  • 17
    • 10944249572 scopus 로고    scopus 로고
    • Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches
    • R. Jensen and Q. Shen, Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches, IEEE Transactions on Knowledge and Data Engineering, 16(12) (2004) 1457-1471.
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.12 , pp. 1457-1471
    • Jensen, R.1    Shen, Q.2
  • 20
    • 42949087870 scopus 로고    scopus 로고
    • Mixed feature selection based on granulation and approximation
    • Q. Hu, J. Liu and D. Yu, Mixed feature selection based on granulation and approximation, Knowledge-Based Systems, 21(4) (2008) 294-304.
    • (2008) Knowledge-Based Systems , vol.21 , Issue.4 , pp. 294-304
    • Hu, Q.1    Liu, J.2    Yu, D.3
  • 21
    • 41949104397 scopus 로고    scopus 로고
    • Numerical attribute reduction based on neighborhood granulation and rough approximation
    • Q. H. Hu, D. R. Yu and Z. X. Xie, Numerical attribute reduction based on neighborhood granulation and rough approximation, Journal of Software, 19(3) (2008) 640-649.
    • (2008) Journal of Software , vol.19 , Issue.3 , pp. 640-649
    • Hu, Q.H.1    Yu, D.R.2    Xie, Z.X.3
  • 22
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola and K.-R. Müller, Nonlinear component analysis as a kernel eigenvalue problem, Neural Computation, 10(5) (1998) 1299-1319.
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3
  • 23
    • 2142643698 scopus 로고    scopus 로고
    • A support vector machine with a hybrid kernel and minimal vapnik-chervonenkis dimension
    • Y. Tan and J. Wang, A support vector machine with a hybrid kernel and minimal vapnik-chervonenkis dimension, IEEE Transactions on Knowledge and Data Engineering, 16(4) (2004) 385-395.
    • (2004) IEEE Transactions on Knowledge and Data Engineering , vol.16 , Issue.4 , pp. 385-395
    • Tan, Y.1    Wang, J.2
  • 24
    • 0036161011 scopus 로고    scopus 로고
    • Choosing multiple parameters for support vector machines
    • O. Chapelle, V. Vapnik, O. Bousquet and S. Mukherjee, Choosing multiple parameters for support vector machines, Machine Learning, 46(1-3) (2002) 131-159.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 131-159
    • Chapelle, O.1    Vapnik, V.2    Bousquet, O.3    Mukherjee, S.4
  • 25
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • I. Guyon and A. Elisseeff, An introduction to variable and feature selection, Journal of machine learning research, 3(7-8) (2003) 1157-1182.
    • (2003) Journal of Machine Learning Research , vol.3 , Issue.7-8 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 26
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature selection
    • R. Kohavi and G. John, Wrappers for feature selection, Artificial Intelligence, 97(1-2) (1997) 273-324.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 27
    • 37349079091 scopus 로고    scopus 로고
    • Case Western Reserve University
    • K. A. Loparo, Bearing vibration data set, Case Western Reserve University (http://www. eecs. cwru. edu/laboratory/bearing/download. htm).
    • Bearing vibration data set
    • Loparo, K.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.