메뉴 건너뛰기




Volumn 25, Issue 2, 2012, Pages 326-344

A Support Vector Machine approach based on physical model training for rolling element bearing fault detection in industrial environments

Author keywords

Condition monitoring; Fault detection; Rolling element bearings; Support Vector Machines; Vibration analysis

Indexed keywords

AUTOMATED DIAGNOSIS; BASIC CONCEPTS; CLASSIFICATION PROCEDURE; DATA PREPROCESSING; DEMODULATED SIGNALS; EXPERIMENTAL DATA; EXPERIMENTAL TEST; FREQUENCY DOMAINS; INDUSTRIAL ENVIRONMENTS; INDUSTRIAL TEST CASE; NORMAL CONDITION; ORDER ANALYSIS; PHYSICAL MODEL; RAW SIGNALS; ROLLING ELEMENT BEARING; ROLLING ELEMENT BEARINGS; ROTATING SPEED; ROTATION SPEED; SIMULATION DATA; SUDDEN CHANGE; SUPPORT VECTOR; SVM CLASSIFIERS; TEST CASE; TWO STAGE; TWO-STAGE RECOGNITION;

EID: 84855783889     PISSN: 09521976     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.engappai.2011.09.010     Document Type: Article
Times cited : (218)

References (28)
  • 2
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • C.J.C. Burges A tutorial on support vector machines for pattern recognition Data Min. Knowl. Discovery 2 1998 955 974
    • (1998) Data Min. Knowl. Discovery , vol.2 , pp. 955-974
    • Burges, C.J.C.1
  • 3
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • DOI 10.1016/j.ces.2004.08.007, PII S0009250904006013
    • J.-H. Cho, J.-M. Lee, S.W. Choi, D. Lee, and I.-B. Lee Fault identification for process monitoring using kernel principal component analysis Chem. Eng. Sci. 60 2005 279 288 (Pubitemid 39622624)
    • (2005) Chemical Engineering Science , vol.60 , Issue.1 , pp. 279-288
    • Cho, J.-H.1    Lee, J.-M.2    Choi, S.W.3    Lee, D.4    Lee, I.-B.5
  • 5
    • 0003425664 scopus 로고    scopus 로고
    • Support Vector Machines for Classification and Regression
    • Department of Electrical and Computer Science
    • Gunn, S.R.; 1998. Support Vector Machines for Classification and Regression. Technical Report. University of Southampton. Department of Electrical and Computer Science.
    • (1998) Technical Report. University of Southampton
    • Gunn, S.R.1
  • 6
    • 0036505670 scopus 로고    scopus 로고
    • A comparison of methods for multi-class support vector machines
    • C.W. Hsu, and C.J. Lin A comparison of methods for multi-class support vector machines IEEE Trans. Neural Networks 13 2 2002 415 425
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.2 , pp. 415-425
    • Hsu, C.W.1    Lin, C.J.2
  • 8
    • 33750503791 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble
    • DOI 10.1016/j.ymssp.2006.01.007, PII S0888327006000306
    • Q. Hu, Z. He, Z. Zhang, and Y. Zi Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble Mech. Syst. Signal Process. 21 2 2007 688 705 (Pubitemid 44667414)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.2 , pp. 688-705
    • Hu, Q.1    He, Z.2    Zhang, Z.3    Zi, Y.4
  • 10
    • 0345978376 scopus 로고    scopus 로고
    • Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms
    • DOI 10.1006/mssp.2001.1454
    • L.B. Jack, and A.K. Nandi Fault detection using support vector machines and artificial neural networks, augmented by genetic algorithms Mech. Syst. Signal Process. 16 2-3 2002 373 390 (Pubitemid 40000347)
    • (2002) Mechanical Systems and Signal Processing , vol.16 , Issue.2-3 , pp. 373-390
    • Jack, L.B.1    Nandi, A.K.2
  • 11
    • 37349079091 scopus 로고    scopus 로고
    • Case Western Reserve University
    • Loparo, K.A.; Bearings Vibration Data Set. Case Western Reserve University. 〈http://www.eecs.case.edu/laboratory/bearing/download. htm〉.
    • Bearings Vibration Data Set
    • Loparo, K.A.1
  • 12
    • 0021377369 scopus 로고
    • Vibration monitoring of rolling element bearings by the high frequency resonance technique - A review
    • DOI 10.1016/0301-679X(84)90076-8
    • P.D. McFadden, and J.D. Smith Vibration monitoring of rolling element bearings by the high frequency resonance technique - a review Tribol. Int. 117 1 1984 3 10 (Pubitemid 14561780)
    • (1984) Tribology International , vol.17 , Issue.1 , pp. 3-10
    • McFadden, P.D.1    Smith, J.D.2
  • 13
    • 0021758020 scopus 로고
    • Model for the vibration produced by a single point defect in a rolling element bearing
    • DOI 10.1016/0022-460X(84)90595-9
    • P.D. McFadden, and J.D. Smith Model for the vibration produced by a single point defect in a rolling element bearing J. Sound Vib. 96 1 1984 69 82 (Pubitemid 15421328)
    • (1984) Journal of Sound and Vibration , vol.96 , Issue.1 , pp. 69-82
    • McFadden, P.D.1    Smith, J.D.2
  • 14
    • 0036664241 scopus 로고    scopus 로고
    • Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted morlet wavelets
    • N.G. Nikolaou, and I.A. Antoniadis Demodulation of vibration signals generated by defects in rolling element bearings using complex shifted morlet wavelets Mech. Syst. Signal Process. 16 4 2002 677 694
    • (2002) Mech. Syst. Signal Process. , vol.16 , Issue.4 , pp. 677-694
    • Nikolaou, N.G.1    Antoniadis, I.A.2
  • 15
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Scholkopf, MIT Press Cambridge
    • J. Platt Fast training of support vector machines using sequential minimal optimization B. Scholkopf, Advances in Kernel Methods - Support Vector Learning 1999 MIT Press Cambridge 185 208
    • (1999) Advances in Kernel Methods - Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 17
    • 33646512202 scopus 로고    scopus 로고
    • Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines
    • A. Rojas, and A. Nandi Practical scheme for fast detection and classification of rolling-element bearing faults using support vector machines Mech. Syst. Signal Process. 20 7 2006 1523 1536
    • (2006) Mech. Syst. Signal Process. , vol.20 , Issue.7 , pp. 1523-1536
    • Rojas, A.1    Nandi, A.2
  • 18
    • 0347526092 scopus 로고    scopus 로고
    • Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection
    • B. Samanta, K.R. Al-Balushi, and S.A. Al-Araimi Artificial neural networks and support vector machines with genetic algorithm for bearing fault detection Eng. Appl. Artif. Intell. 16 7-8 2003 657 665
    • (2003) Eng. Appl. Artif. Intell. , vol.16 , Issue.78 , pp. 657-665
    • Samanta, B.1    Al-Balushi, K.R.2    Al-Araimi, S.A.3
  • 19
    • 58949102919 scopus 로고    scopus 로고
    • Use of particle swarm optimization for machinery fault detection
    • B. Samanta, and C. Nataraj Use of particle swarm optimization for machinery fault detection Eng. Appl. Artif. Intell. 22 2 2009 308 316
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.2 , pp. 308-316
    • Samanta, B.1    Nataraj, C.2
  • 22
    • 28744446722 scopus 로고    scopus 로고
    • Fault diagnosis of rotating machinery based on multi-class support vector machines
    • B.-S. Yang, T. Han, and W.-W. Hwang Fault diagnosis of rotating machinery based on multi-class support vector machines J. Mech. Sci. Technol. 19 3 2005 846 859 (Pubitemid 41754848)
    • (2005) Journal of Mechanical Science and Technology , vol.19 , Issue.3 , pp. 846-859
    • Yang, B.-S.1    Han, T.2    Hwang, W.-W.3
  • 23
    • 34047275789 scopus 로고    scopus 로고
    • Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension
    • DOI 10.1016/j.ymssp.2006.10.005, PII S0888327006002251
    • J. Yang, Y. Zhang, and Y. Zhu Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension Mech. Syst. Signal Process. 21 5 2007 2012 2024 (Pubitemid 46550771)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.5 , pp. 2012-2024
    • Yang, J.1    Zhang, Y.2    Zhu, Y.3
  • 24
    • 78049526939 scopus 로고    scopus 로고
    • Rolling element bearing fault detection in industrial environments based on a K-means clustering approach
    • C.T. Yiakopoulos, K.C. Gryllias, and I.A. Antoniadis Rolling element bearing fault detection in industrial environments based on a K-means clustering approach Expert Syst. Appl. V38 2011 2888 2911
    • (2011) Expert Syst. Appl. , vol.38 , pp. 2888-2911
    • Yiakopoulos, C.T.1    Gryllias, K.C.2    Antoniadis, I.A.3
  • 25
    • 33845414646 scopus 로고    scopus 로고
    • Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm
    • S.-F. Yuan, and F.-L. Chu Fault diagnosis based on support vector machines with parameter optimisation by artificial immunisation algorithm Mech. Syst. Signal Process. 21 3 2007 1318 1330
    • (2007) Mech. Syst. Signal Process. , vol.21 , Issue.3 , pp. 1318-1330
    • Yuan, S.-F.1    Chu, F.-L.2
  • 26
    • 33846837272 scopus 로고    scopus 로고
    • Fault diagnostics based on particle swarm optimisation and support vector machines
    • DOI 10.1016/j.ymssp.2006.07.008, PII S0888327006001440
    • S.-F. Yuan, and F.-L. Chu Fault diagnosis based on particle optimisation and support vector machines Mech. Syst. Signal Process. 21 4 2007 1787 1798 (Pubitemid 46205101)
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.4 , pp. 1787-1798
    • Yuan, S.-F.1    Chu, F.-L.2
  • 27
    • 47549099484 scopus 로고    scopus 로고
    • Multimode process monitoring with bayesian inference-based finite Gaussian mixture models
    • DOI 10.1002/aic.11515
    • J. Yu, and S.J. Qin Multimode process monitoring with Bayesian inference-based finite Gaussian mixture models AIChE J. 54 7 2008 1811 1829 (Pubitemid 352006869)
    • (2008) AIChE Journal , vol.54 , Issue.7 , pp. 1811-1829
    • Yu, J.1    Qin, S.J.2
  • 28
    • 70349329819 scopus 로고    scopus 로고
    • Multiway Gaussian mixture model based multiphase batch process monitoring
    • J. Yu, and S.J. Qin Multiway Gaussian mixture model based multiphase batch process monitoring Ind. Eng. Chem. Res. 48 18 2009 8585 8594
    • (2009) Ind. Eng. Chem. Res. , vol.48 , Issue.18 , pp. 8585-8594
    • Yu, J.1    Qin, S.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.