메뉴 건너뛰기




Volumn 34, Issue 4, 2018, Pages 691-692

Towards unified quality verification of synthetic count data with countsimQC

Author keywords

[No Author keywords available]

Indexed keywords

PROCEDURES; SEQUENCE ANALYSIS; SOFTWARE; STANDARDS;

EID: 85042546527     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btx631     Document Type: Article
Times cited : (37)

References (7)
  • 1
    • 84988570649 scopus 로고    scopus 로고
    • MultiQC: Summarize analysis results for multiple tools and samples in a single report
    • Ewels,P. et al. (2016) MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics, btw354.
    • (2016) Bioinformatics , pp. btw354
    • Ewels, P.1
  • 2
    • 75249087100 scopus 로고    scopus 로고
    • Edger: A bioconductor package for differential expression analysis of digital gene expression data
    • Robinson,M. D. et al. (2010) edger: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
    • (2010) Bioinformatics , vol.26 , pp. 139-140
    • Robinson, M.D.1
  • 3
    • 84903185013 scopus 로고    scopus 로고
    • Single-cell RNA-seq reveals dynamic paracrine control of cellular variation
    • Shalek,A. K. et al. (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature, 509, 363-369.
    • (2014) Nature , vol.509 , pp. 363-369
    • Shalek, A.K.1
  • 4
    • 84907021033 scopus 로고    scopus 로고
    • Compcoder-an R package for benchmarking differential expression methods for RNA-seq data
    • Soneson,C. (2014) compcoder-an R package for benchmarking differential expression methods for RNA-seq data. Bioinformatics, 30, 2517-2518.
    • (2014) Bioinformatics , vol.30 , pp. 2517-2518
    • Soneson, C.1
  • 5
    • 85042148811 scopus 로고    scopus 로고
    • Bias, robustness and scalability in differential expression analysis of single-cell RNA-Seq data
    • Soneson,C. and Robinson,M. D. (2017) Bias, robustness and scalability in differential expression analysis of single-cell RNA-Seq data. bioRxiv, doi: 10. 1101/143289.
    • (2017) BioRxiv
    • Soneson, C.1    Robinson, M.D.2
  • 6
    • 85027719383 scopus 로고    scopus 로고
    • Powsim: Power analysis for bulk and single cell RNA-seq experiments
    • Vieth,B. et al. (2017) powsim: power analysis for bulk and single cell RNA-seq experiments. bioRxiv, doi:10. 1101/117150.
    • (2017) BioRxiv
    • Vieth, B.1
  • 7
    • 85029212828 scopus 로고    scopus 로고
    • Splatter: Simulation of single-cell RNA sequencing data
    • Zappia,L. et al. (2017) Splatter: simulation of single-cell RNA sequencing data. Genome Biol., 18, 174.
    • (2017) Genome Biol. , vol.18 , pp. 174
    • Zappia, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.