메뉴 건너뛰기




Volumn 216, Issue , 2016, Pages 718-734

Bounded activation functions for enhanced training stability of deep neural networks on visual pattern recognition problems

Author keywords

Activation function; Convolutional neural network; Deep neural network; Generalization performance; Output boundary; Training stability

Indexed keywords

CHEMICAL ACTIVATION; COMPUTATION THEORY; COMPUTATIONAL EFFICIENCY; CONVERGENCE OF NUMERICAL METHODS; CONVOLUTION; MEAN SQUARE ERROR; NEURAL NETWORKS; PATTERN RECOGNITION; STABILITY;

EID: 84994477344     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2016.08.037     Document Type: Article
Times cited : (157)

References (64)
  • 1
    • 84904803668 scopus 로고    scopus 로고
    • Bi-modal derivative activation function for sigmoidal feedforward networks
    • [1] Sodhi, S.S., Chandra, P., Bi-modal derivative activation function for sigmoidal feedforward networks. Neurocomputing 143:0 (2014), 182–196, 10.1016/j.neucom.2014.06.007.
    • (2014) Neurocomputing , vol.143 , pp. 182-196
    • Sodhi, S.S.1    Chandra, P.2
  • 2
    • 0025751820 scopus 로고
    • Approximation capabilities of multilayer feedforward networks
    • [2] Hornik, K., Approximation capabilities of multilayer feedforward networks. Neural Netw. 4:2 (1991), 251–257, 10.1016/0893-6080(91)90009-T.
    • (1991) Neural Netw. , vol.4 , Issue.2 , pp. 251-257
    • Hornik, K.1
  • 3
    • 33745942102 scopus 로고    scopus 로고
    • 〉., Neural networks and modelling in vacuum science, Vacuum, 80(10), 2006, pp. 1107–1122. The World Energy Crisis: Some Vacuum based Solutions 〈
    • [3] I. Belič, Neural networks and modelling in vacuum science, Vacuum, 80(10), 2006, pp. 1107–1122. The World Energy Crisis: Some Vacuum based Solutions 〈http://dx.doi.org/10.1016/j.vacuum.2006.02.017〉.
    • Belič, I.1
  • 4
    • 84958168150 scopus 로고    scopus 로고
    • Effective deep learning-based multi-modal retrieval
    • [4] Wang, W., Yang, X., Ooi, B., Zhang, D., Zhuang, Y., Effective deep learning-based multi-modal retrieval. VLDB J., 2015, 1–23, 10.1007/s00778-015-0391-4.
    • (2015) VLDB J. , pp. 1-23
    • Wang, W.1    Yang, X.2    Ooi, B.3    Zhang, D.4    Zhuang, Y.5
  • 5
    • 84874725915 scopus 로고    scopus 로고
    • Modeling compressive strength of {EPS} lightweight concrete using regression, neural network and {ANFIS}
    • [5] Sadrmomtazi, A., Sobhani, J., Mirgozar, M., Modeling compressive strength of {EPS} lightweight concrete using regression, neural network and {ANFIS}. Constr. Build. Mater. 42 (2013), 205–216, 10.1016/j.conbuildmat.2013.01.016.
    • (2013) Constr. Build. Mater. , vol.42 , pp. 205-216
    • Sadrmomtazi, A.1    Sobhani, J.2    Mirgozar, M.3
  • 6
    • 84867675466 scopus 로고    scopus 로고
    • Ultrasound-assisted extraction of phenolics from longan (Dimocarpus longan lour.) fruit seed with artificial neural network and their antioxidant activity
    • [6] Wen, L., Yang, B., Cui, C., You, L., Zhao, M., Ultrasound-assisted extraction of phenolics from longan (Dimocarpus longan lour.) fruit seed with artificial neural network and their antioxidant activity. Food Anal. Methods 5:6 (2012), 1244–1251, 10.1007/s12161-012-9370-1.
    • (2012) Food Anal. Methods , vol.5 , Issue.6 , pp. 1244-1251
    • Wen, L.1    Yang, B.2    Cui, C.3    You, L.4    Zhao, M.5
  • 8
    • 84994422493 scopus 로고    scopus 로고
    • Training cnns with low-rank filters for efficient image classification, CoRR abs/1511.06744.
    • [8] Y. Ioannou, D.P. Robertson, J. Shotton, R. Cipolla, A. Criminisi, Training cnns with low-rank filters for efficient image classification, CoRR abs/1511.06744.
    • Ioannou, Y.1    Robertson, D.P.2    Shotton, J.3    Cipolla, R.4    Criminisi, A.5
  • 9
    • 34247180678 scopus 로고    scopus 로고
    • Real-time video convolutional face finder on embedded platforms
    • [9] Mamalet, F., Roux, S., Garcia, C., Real-time video convolutional face finder on embedded platforms. EURASIP J. Embed. Syst. 2007:1 (2007), 1–8, 10.1155/2007/21724.
    • (2007) EURASIP J. Embed. Syst. , vol.2007 , Issue.1 , pp. 1-8
    • Mamalet, F.1    Roux, S.2    Garcia, C.3
  • 11
    • 84994422473 scopus 로고    scopus 로고
    • Agenet: deeply learned regressor and classifier for robust apparent age estimation, 2015.
    • [11] X. Liu, S. Li, M. Kan, J. Zhang, S. Wu, W. Liu, H. Han, S. Shan, X. Chen, Agenet: deeply learned regressor and classifier for robust apparent age estimation, 2015.
    • Liu, X.1    Li, S.2    Kan, M.3    Zhang, J.4    Wu, S.5    Liu, W.6    Han, H.7    Shan, S.8    Chen, X.9
  • 12
    • 84994422474 scopus 로고    scopus 로고
    • End-to-end photo-sketch generation via fully convolutional representation learning, CoRR abs/1501.07180.
    • [12] L. Zhang, L. Lin, X. Wu, S. Ding, L. Zhang, End-to-end photo-sketch generation via fully convolutional representation learning, CoRR abs/1501.07180.
    • Zhang, L.1    Lin, L.2    Wu, X.3    Ding, S.4    Zhang, L.5
  • 13
    • 84994422475 scopus 로고    scopus 로고
    • Weakly supervised object segmentation with convolutional neural networks, Idiap-RR Idiap-RR-13-2014, Idiap (8 2014).
    • [13] P.H.O. Pinheiro, R. Collobert, Weakly supervised object segmentation with convolutional neural networks, Idiap-RR Idiap-RR-13-2014, Idiap (8 2014).
    • Pinheiro, P.H.O.1    Collobert, R.2
  • 14
    • 84930634156 scopus 로고    scopus 로고
    • Joint training of a convolutional network and a graphical model for human pose estimation
    • Z. Ghahramani M. Welling C. Cortes N. Lawrence K. Weinberger Curran Associates, Inc. United States
    • [14] Tompson, J.J., Jain, A., LeCun, Y., Bregler, C., Joint training of a convolutional network and a graphical model for human pose estimation. Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., (eds.) Advances in Neural Information Processing Systems, 27, 2014, Curran Associates, Inc., United States, 1799–1807.
    • (2014) Advances in Neural Information Processing Systems , vol.27 , pp. 1799-1807
    • Tompson, J.J.1    Jain, A.2    LeCun, Y.3    Bregler, C.4
  • 15
    • 84994451847 scopus 로고    scopus 로고
    • Multi-digit number recognition from street view imagery using deep convolutional neural networks, CoRR abs/1312.6082.
    • [15] I.J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, V.D. Shet, Multi-digit number recognition from street view imagery using deep convolutional neural networks, CoRR abs/1312.6082.
    • Goodfellow, I.J.1    Bulatov, Y.2    Ibarz, J.3    Arnoud, S.4    Shet, V.D.5
  • 16
    • 84994451846 scopus 로고    scopus 로고
    • EESEN: end-to-end speech recognition using deep RNN models and wfst-based decoding, CoRR abs/1507.08240.
    • [16] Y. Miao, M. Gowayyed, F. Metze, EESEN: end-to-end speech recognition using deep RNN models and wfst-based decoding, CoRR abs/1507.08240.
    • Miao, Y.1    Gowayyed, M.2    Metze, F.3
  • 17
    • 84994427713 scopus 로고    scopus 로고
    • Generating sequences with recurrent neural networks, CoRR abs/1308.0850.
    • [17] A. Graves, Generating sequences with recurrent neural networks, CoRR abs/1308.0850.
    • Graves, A.1
  • 18
    • 84994442387 scopus 로고    scopus 로고
    • Neural random-access machines, CoRR abs/1511.06392.
    • [18] K. Kurach, M. Andrychowicz, I. Sutskever, Neural random-access machines, CoRR abs/1511.06392.
    • Kurach, K.1    Andrychowicz, M.2    Sutskever, I.3
  • 19
    • 84897640798 scopus 로고    scopus 로고
    • Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation
    • [19] Bian, W., Chen, X., Neural network for nonsmooth, nonconvex constrained minimization via smooth approximation. IEEE Trans. Neural Netw. Learn. Syst. 25:3 (2014), 545–556, 10.1109/TNNLS.2013.2278427.
    • (2014) IEEE Trans. Neural Netw. Learn. Syst. , vol.25 , Issue.3 , pp. 545-556
    • Bian, W.1    Chen, X.2
  • 20
    • 84880877425 scopus 로고    scopus 로고
    • Low-order dominant harmonic estimation using adaptive wavelet neural network
    • [20] Jain, S., Singh, S., Low-order dominant harmonic estimation using adaptive wavelet neural network. IEEE Trans. Ind. Electron. 61:1 (2014), 428–435, 10.1109/TIE.2013.2242414.
    • (2014) IEEE Trans. Ind. Electron. , vol.61 , Issue.1 , pp. 428-435
    • Jain, S.1    Singh, S.2
  • 21
    • 84994422502 scopus 로고    scopus 로고
    • Gaussian-binary restricted boltzmann machines on modeling natural image statistics, CoRR abs/1401.5900.
    • [21] N. Wang, J. Melchior, L. Wiskott, Gaussian-binary restricted boltzmann machines on modeling natural image statistics, CoRR abs/1401.5900.
    • Wang, N.1    Melchior, J.2    Wiskott, L.3
  • 22
    • 84872067375 scopus 로고    scopus 로고
    • Fast harmonic estimation of stationary and time-varying signals using ea-awnn
    • [22] Jain, S., Singh, S., Fast harmonic estimation of stationary and time-varying signals using ea-awnn. IEEE Trans. Instrum. Meas. 62:2 (2013), 335–343, 10.1109/TIM.2012.2217637.
    • (2013) IEEE Trans. Instrum. Meas. , vol.62 , Issue.2 , pp. 335-343
    • Jain, S.1    Singh, S.2
  • 23
    • 84901488781 scopus 로고    scopus 로고
    • Hardware implementation of evolvable block-based neural networks utilizing a cost efficient sigmoid-like activation function
    • [23] Nambiar, V.P., Hani, M.K., Sahnoun, R., Marsono, M.N., Hardware implementation of evolvable block-based neural networks utilizing a cost efficient sigmoid-like activation function. Neurocomputing 140 (2014), 228–241, 10.1016/j.neucom.2014.03.018.
    • (2014) Neurocomputing , vol.140 , pp. 228-241
    • Nambiar, V.P.1    Hani, M.K.2    Sahnoun, R.3    Marsono, M.N.4
  • 24
    • 84908636617 scopus 로고    scopus 로고
    • On practical constraints of approximation using neural networks on current digital computers
    • Proceedings of the 2014 18th International Conference onIntelligent Engineering Systems (INES), 2014, pp. 257–262. 〈〉.
    • [24] M. Puheim, L. Nyulaszi, L. Madarasz, V. Gaspar, On practical constraints of approximation using neural networks on current digital computers, in: Proceedings of the 2014 18th International Conference onIntelligent Engineering Systems (INES), 2014, pp. 257–262. 〈 http://dx.doi.org/10.1109/INES.2014.6909379〉.
    • Puheim, M.1    Nyulaszi, L.2    Madarasz, L.3    Gaspar, V.4
  • 25
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • [25] Hornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators. Neural Netw. 2:5 (1989), 359–366, 10.1016/0893–6080(89)90020-8.
    • (1989) Neural Netw. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 27
    • 38649135772 scopus 로고    scopus 로고
    • A max-piecewise-linear neural network for function approximation
    • [27] Wen, C., Ma, X., A max-piecewise-linear neural network for function approximation. Neurocomputing 71:4 (2008), 843–852.
    • (2008) Neurocomputing , vol.71 , Issue.4 , pp. 843-852
    • Wen, C.1    Ma, X.2
  • 28
    • 84951100009 scopus 로고    scopus 로고
    • A non-sigmoidal activation function for feedforward artificial neural networks
    • Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8 〈〉.
    • [28] P. Chandra, U. Ghose, A. Sood, A non-sigmoidal activation function for feedforward artificial neural networks, in: Proceedings of the 2015 International Joint Conference on Neural Networks (IJCNN), 2015, pp. 1–8 〈 http://dx.doi.org/10.1109/IJCNN.2015.7280440〉.
    • Chandra, P.1    Ghose, U.2    Sood, A.3
  • 29
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Proceedings of the IEEE, 86(11), 1998, pp. 2278–2324 〈〉.
    • [29] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, in: Proceedings of the IEEE, 86(11), 1998, pp. 2278–2324 〈 http://dx.doi.org/10.1109/5.726791〉.
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 30
    • 84994422477 scopus 로고    scopus 로고
    • Implementation of a new sigmoid function in backpropagation neural networks, Master's thesis, East Tennessee State University (8 2011).
    • [30] J.A. Bonnell, Implementation of a new sigmoid function in backpropagation neural networks, Master's thesis, East Tennessee State University (8 2011).
    • Bonnell, J.A.1
  • 31
    • 79952817023 scopus 로고    scopus 로고
    • Comparison of new activation functions in neural network for forecasting financial time series
    • [31] da, G., Gomes, S., Ludermir, T., Lima, L., Comparison of new activation functions in neural network for forecasting financial time series. Neural Comput. Appl. 20:3 (2011), 417–439, 10.1007/s00521-010-0407-3.
    • (2011) Neural Comput. Appl. , vol.20 , Issue.3 , pp. 417-439
    • da, G.1    Gomes, S.2    Ludermir, T.3    Lima, L.4
  • 32
    • 84908635236 scopus 로고    scopus 로고
    • A skewed derivative activation function for sffanns
    • Recent Advances and Innovations in Engineering (ICRAIE), 2014
    • [32] P. Chandra, S. Sodhi, A skewed derivative activation function for sffanns, in: Recent Advances and Innovations in Engineering (ICRAIE), 2014, 2014, pp. 1–6. http://dx.doi.org/10.1109/ICRAIE.2014.6909324.
    • (2014) , pp. 1-6
    • Chandra, P.1    Sodhi, S.2
  • 33
    • 0742271425 scopus 로고    scopus 로고
    • A case for the self-adaptation of activation functions in {FFANNs}
    • [33] Chandra, P., Singh, Y., A case for the self-adaptation of activation functions in {FFANNs}. Neurocomputing 56 (2004), 447–454, 10.1016/j.neucom.2003.08.005.
    • (2004) Neurocomputing , vol.56 , pp. 447-454
    • Chandra, P.1    Singh, Y.2
  • 34
    • 10244235219 scopus 로고    scopus 로고
    • An activation function adapting training algorithm for sigmoidal feedforward networks, Neurocomputing 61 (2004) 429 – 437, hybrid Neurocomputing: Selected Papers from the 2nd International Conference on Hybrid Intelligent Systems.
    • [34] P. Chandra, Y. Singh, An activation function adapting training algorithm for sigmoidal feedforward networks, Neurocomputing 61 (2004) 429 – 437, hybrid Neurocomputing: Selected Papers from the 2nd International Conference on Hybrid Intelligent Systems. http://dx.doi.org/10.1016/j.neucom.2004.04.001.
    • Chandra, P.1    Singh, Y.2
  • 35
    • 0038648742 scopus 로고    scopus 로고
    • A class +1 sigmoidal activation functions for ffanns
    • [35] Singh, Y., Chandra, P., A class +1 sigmoidal activation functions for ffanns. J. Econ. Dyn. Control 28:1 (2003), 183–187.
    • (2003) J. Econ. Dyn. Control , vol.28 , Issue.1 , pp. 183-187
    • Singh, Y.1    Chandra, P.2
  • 37
    • 84881559238 scopus 로고    scopus 로고
    • J. Cao S. Fei Multistability and instability of delayed competitive neural networks with nondecreasing piecewise linear activation functions Neurocomputing 119 (2013) 281–291,. (intelligent Processing Techniques for Semantic-based Image and Video Retrieval)
    • [37] X. Nie J. Cao S. Fei Multistability and instability of delayed competitive neural networks with nondecreasing piecewise linear activation functions Neurocomputing 119 (2013) 281–291, 10.1016/j.neucom.2013.03.030. (intelligent Processing Techniques for Semantic-based Image and Video Retrieval).
    • Nie, X.1
  • 38
    • 0033990683 scopus 로고    scopus 로고
    • A weight initialization method for improving training speed in feedforward neural network
    • [38] Yam, J.Y., Chow, T.W., A weight initialization method for improving training speed in feedforward neural network. Neurocomputing 30:1 (2000), 219–232.
    • (2000) Neurocomputing , vol.30 , Issue.1 , pp. 219-232
    • Yam, J.Y.1    Chow, T.W.2
  • 39
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • F. Pereira C. Burges L. Bottou K. Weinberger Curran Associates, Inc.
    • [39] Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Pereira, F., Burges, C., Bottou, L., Weinberger, K., (eds.) Advances in Neural Information Processing Systems 25, 2012, Curran Associates, Inc., 1097–1105.
    • (2012) Advances in Neural Information Processing Systems 25 , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 41
    • 84994430830 scopus 로고    scopus 로고
    • P. Narayanan, Deep learning with limited numerical precision, CoRR abs/1502.02551.
    • [41] S.G. andAnkur Agrawal, K. Gopalakrishnan, P. Narayanan, Deep learning with limited numerical precision, CoRR abs/1502.02551.
    • andAnkurAgrawal, S.G.1    Gopalakrishnan, K.2
  • 43
    • 84913580146 scopus 로고    scopus 로고
    • Caffe: Convolutional architecture for fast feature embedding
    • Proceedings of the 22nd ACM International Conference on Multimedia, MM'14, ACM, New York, NY, USA, 2014, pp. 675–678. 〈〉.
    • [43] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, T. Darrell, Caffe: Convolutional architecture for fast feature embedding, in: Proceedings of the 22nd ACM International Conference on Multimedia, MM'14, ACM, New York, NY, USA, 2014, pp. 675–678. 〈 http://dx.doi.org/10.1145/2647868.2654889〉.
    • Jia, Y.1    Shelhamer, E.2    Donahue, J.3    Karayev, S.4    Long, J.5    Girshick, R.6    Guadarrama, S.7    Darrell, T.8
  • 46
    • 84959912559 scopus 로고    scopus 로고
    • Shidiannao: Shifting vision processing closer to the sensor
    • Proceedings of the 42nd Annual International Symposium on Computer Architecture, ISCA'15, ACM, New York, NY, USA, 2015, pp. 92–104. 〈〉.
    • [46] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen, O. Temam, Shidiannao: Shifting vision processing closer to the sensor, in: Proceedings of the 42nd Annual International Symposium on Computer Architecture, ISCA'15, ACM, New York, NY, USA, 2015, pp. 92–104. 〈 http://dx.doi.org/10.1145/2749469.2750389〉.
    • Du, Z.1    Fasthuber, R.2    Chen, T.3    Ienne, P.4    Li, L.5    Luo, T.6    Feng, X.7    Chen, Y.8    Temam, O.9
  • 47
    • 84950983195 scopus 로고    scopus 로고
    • Pudiannao: A polyvalent machine learning accelerator
    • Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS'15, ACM, New York, NY, USA, 2015, pp. 369–381. 〈〉.
    • [47] D. Liu, T. Chen, S. Liu, J. Zhou, S. Zhou, O. Teman, X. Feng, X. Zhou, Y. Chen, Pudiannao: A polyvalent machine learning accelerator, in: Proceedings of the Twentieth International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS'15, ACM, New York, NY, USA, 2015, pp. 369–381. 〈 http://dx.doi.org/10.1145/2694344.2694358〉.
    • Liu, D.1    Chen, T.2    Liu, S.3    Zhou, J.4    Zhou, S.5    Teman, O.6    Feng, X.7    Zhou, X.8    Chen, Y.9
  • 48
    • 84937706638 scopus 로고    scopus 로고
    • Dadiannao: A machine-learning supercomputer
    • Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-47, IEEE Computer Society, Washington, DC, USA, 2014, pp. 609–622. 〈〉.
    • [48] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, O. Temam, Dadiannao: A machine-learning supercomputer, in: Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-47, IEEE Computer Society, Washington, DC, USA, 2014, pp. 609–622. 〈 http://dx.doi.org/10.1109/MICRO.2014.58〉.
    • Chen, Y.1    Luo, T.2    Liu, S.3    Zhang, S.4    He, L.5    Wang, J.6    Li, L.7    Chen, T.8    Xu, Z.9    Sun, N.10    Temam, O.11
  • 49
    • 84897780584 scopus 로고    scopus 로고
    • Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
    • Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS'14, ACM, New York, NY, USA, 2014, pp. 269–284. 〈〉.
    • [49] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, O. Temam, Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning, in: Proceedings of the 19th International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS'14, ACM, New York, NY, USA, 2014, pp. 269–284. 〈 http://dx.doi.org/10.1145/2541940.2541967〉.
    • Chen, T.1    Du, Z.2    Sun, N.3    Wang, J.4    Wu, C.5    Chen, Y.6    Temam, O.7
  • 50
    • 84994427701 scopus 로고    scopus 로고
    • Approximate computing on programmable socs via neural acceleration, Technical report, 2014.
    • [50] T. Moreau, J. Nelson, A. Sampson, H. Esmaeilzadeh, L. Ceze, Approximate computing on programmable socs via neural acceleration, Technical report, 2014.
    • Moreau, T.1    Nelson, J.2    Sampson, A.3    Esmaeilzadeh, H.4    Ceze, L.5
  • 51
    • 84923367417 scopus 로고    scopus 로고
    • Deep neural nets as a method for quantitative structure-activity relationships
    • [51] Ma, J., Sheridan, R.P., Liaw, A., Dahl, G.E., Svetnik, V., Deep neural nets as a method for quantitative structure-activity relationships. J. Chem. Inf. Model. 55:2 (2015), 263–274.
    • (2015) J. Chem. Inf. Model. , vol.55 , Issue.2 , pp. 263-274
    • Ma, J.1    Sheridan, R.P.2    Liaw, A.3    Dahl, G.E.4    Svetnik, V.5
  • 52
    • 84905239342 scopus 로고    scopus 로고
    • Improving deep neural network acoustic models using generalized maxout networks
    • Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 215–219. 〉.
    • [52] X. Zhang, J. Trmal, D. Povey, S. Khudanpur, Improving deep neural network acoustic models using generalized maxout networks, in: Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 215–219. http://dx.doi.org/10.1109/ICASSP.2014.6853589〉.
    • Zhang, X.1    Trmal, J.2    Povey, D.3    Khudanpur, S.4
  • 53
    • 34547967782 scopus 로고    scopus 로고
    • An empirical evaluation of deep architectures on problems with many factors of variation
    • Proceedings of the 24th International Conference on Machine Learning, ICML ’07, ACM, New York, NY, USA, 2007, pp. 473–480. 〈〉.
    • [53] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, Y. Bengio, An empirical evaluation of deep architectures on problems with many factors of variation, in: Proceedings of the 24th International Conference on Machine Learning, ICML ’07, ACM, New York, NY, USA, 2007, pp. 473–480. 〈 http://dx.doi.org/10.1145/1273496.1273556〉.
    • Larochelle, H.1    Erhan, D.2    Courville, A.3    Bergstra, J.4    Bengio, Y.5
  • 55
    • 24644436425 scopus 로고    scopus 로고
    • Learning a similarity metric discriminatively, with application to face verification
    • Proceeedings of the Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1, 2005, pp. 539–546. 〈〉.
    • [55] S. Chopra, R. Hadsell, Y. LeCun, Learning a similarity metric discriminatively, with application to face verification, in: Proceeedings of the Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, vol. 1, 2005, pp. 539–546 . 〈 http://dx.doi.org/10.1109/CVPR.2005.202〉.
    • Chopra, S.1    Hadsell, R.2    LeCun, Y.3
  • 56
    • 84963815143 scopus 로고    scopus 로고
    • Gender classification: a convolutional neural network approach
    • [56] Liew, S.S., Khalil-Hani, M., Syafeeza, A., Bakhteri, R., Gender classification: a convolutional neural network approach. Turk. J. Elec. Eng. 24:3 (2016), 1248–1264.
    • (2016) Turk. J. Elec. Eng. , vol.24 , Issue.3 , pp. 1248-1264
    • Liew, S.S.1    Khalil-Hani, M.2    Syafeeza, A.3    Bakhteri, R.4
  • 58
    • 84862277874 scopus 로고    scopus 로고
    • Understanding the difficulty of training deep feedforward neural networks
    • Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS) 9 (2010) 249–256. 〈〉.
    • [58] X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS) 9 (2010) 249–256. 〈 http://dx.doi.org/10.1.1/207.2059〉.
    • Glorot, X.1    Bengio, Y.2
  • 59
    • 84994427672 scopus 로고    scopus 로고
    • Convolutional Neural Networks in Galaxy Zoo Challenge, April 2014, pp. 1–7.
    • [59] M. Milakov, Convolutional Neural Networks in Galaxy Zoo Challenge, April 2014, pp. 1–7.
    • Milakov, M.1
  • 60
    • 84977913829 scopus 로고    scopus 로고
    • Automatic age estimation based on deep learning algorithm
    • [60] Dong, Y., Liu, Y., Lian, S., Automatic age estimation based on deep learning algorithm. Neurocomputing, 2015, 10.1016/j.neucom.2015.09.115.
    • (2015) Neurocomputing
    • Dong, Y.1    Liu, Y.2    Lian, S.3
  • 61
    • 84911198048 scopus 로고    scopus 로고
    • Deepface: Closing the gap to human-level performance in face verification
    • Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1701–1708. 〈〉.
    • [61] Y. Taigman, M. Yang, M. Ranzato, L. Wolf, Deepface: Closing the gap to human-level performance in face verification, in: Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2014, pp. 1701–1708. 〈 http://dx.doi.org/10.1109/CVPR.2014.220〉.
    • Taigman, Y.1    Yang, M.2    Ranzato, M.3    Wolf, L.4
  • 62
    • 0011761275 scopus 로고    scopus 로고
    • Artificial Intelligence: A Guide to Intelligent Systems
    • 1st ed. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA
    • [62] Negnevitsky, M., Artificial Intelligence: A Guide to Intelligent Systems. 1st ed., 2001, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA.
    • (2001)
    • Negnevitsky, M.1
  • 64
    • 84994442364 scopus 로고    scopus 로고
    • Delving deep into rectifiers: surpassing human-level performance on imagenet classification, CoRR abs/1502.01852.
    • [64] K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: surpassing human-level performance on imagenet classification, CoRR abs/1502.01852.
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.