메뉴 건너뛰기




Volumn , Issue , 2017, Pages 15-26

ZOO: Zeroth order optimization based black-box atacks to deep neural networks without training substitute models

Author keywords

Adversarial learning; Black box attack; Deep learning; Neural network; Substitute model

Indexed keywords

ARTIFICIAL INTELLIGENCE; DATA MINING; DEEP LEARNING; IMPORTANCE SAMPLING; LEARNING SYSTEMS; NEURAL NETWORKS; SPEECH PROCESSING; STOCHASTIC MODELS; STOCHASTIC SYSTEMS; TEXT PROCESSING;

EID: 85037345899     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/3128572.3140448     Document Type: Conference Paper
Times cited : (2048)

References (45)
  • 11
    • 84892854517 scopus 로고    scopus 로고
    • Stochastic first-and zeroth-order methods for nonconvex stochastic programming
    • (2013)
    • Saeed Ghadimi and Guanghui Lan. 2013. Stochastic first-and zeroth-order methods for nonconvex stochastic programming. SIAM Journal on Optimization 23, 4 (2013), 2341-2368.
    • (2013) SIAM Journal on Optimization , vol.23 , Issue.4 , pp. 2341-2368
    • Ghadimi, S.1    Lan, G.2
  • 24
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • (2015)
    • Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553(2015), 436-444.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 25
    • 85014547151 scopus 로고    scopus 로고
    • A comprehensive linear speedup analysis for asynchronous stochastic parallel optimization from zeroth-order to first-order
    • Xiangru Lian, Huan Zhang, Cho-Jui Hsieh, Yijun Huang, and Ji Liu. 2016. A comprehensive linear speedup analysis for asynchronous stochastic parallel optimization from zeroth-order to first-order. In Advances in Neural Information Processing Systems. 3054-3062.
    • (2016) Advances in Neural Information Processing Systems , pp. 3054-3062
    • Lian, X.1    Zhang, H.2    Hsieh, C.-J.3    Huang, Y.4    Liu, J.5
  • 32
    • 84860610528 scopus 로고    scopus 로고
    • Random gradient-free minimization of convex functions
    • Center for Operations Research and Econometrics (CORE)
    • Yurii Nesterov et al. 2011. Random gradient-free minimization of convex functions. Technical Report. Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    • (2011) Technical Report. Université Catholique de Louvain
    • Nesterov, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.