메뉴 건너뛰기




Volumn , Issue , 2016, Pages 49-54

Crafting adversarial input sequences for recurrent neural networks

Author keywords

Adaptation models; Biological neural networks; Computational modeling; Mathematical model; Neurons; Recurrent neural networks

Indexed keywords

ARTIFICIAL INTELLIGENCE; COMPLEX NETWORKS; DATA HANDLING; ELECTRONIC TRADING; LEARNING SYSTEMS; MATHEMATICAL MODELS; MILITARY COMMUNICATIONS; NEURAL NETWORKS; NEURONS;

EID: 85011845631     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/MILCOM.2016.7795300     Document Type: Conference Paper
Times cited : (470)

References (25)
  • 6
    • 85019201146 scopus 로고    scopus 로고
    • Adversarial perturbations of deep neural networks
    • T. Hazan, G. Papandreou D. Tarlow, Eds. MIT Press
    • D. Warde-Farley et al., "Adversarial perturbations of deep neural networks, " in Perturbation, Optimization, Statistics, T. Hazan, G. Papandreou, D. Tarlow, Eds., MIT Press, 2016.
    • Perturbation, Optimization, Statistics , pp. 2016
    • Warde-Farley, D.1
  • 7
    • 84973354134 scopus 로고    scopus 로고
    • Machine learning in adversarial settings
    • May/June
    • P. McDaniel et al., "Machine Learning in Adversarial Settings, " IEEE Security & Privacy, vol. 14, no. 3, May/June 2016.
    • (2016) IEEE Security & Privacy , vol.14 , Issue.3
    • McDaniel, P.1
  • 8
    • 84921817164 scopus 로고
    • Learning representations by back-propagating errors
    • D. E. Rumelhart et al., "Learning representations by back-propagating errors, " Cognitive modeling, vol. 5, 1988.
    • (1988) Cognitive Modeling , vol.5
    • Rumelhart, D.E.1
  • 9
    • 84946021187 scopus 로고    scopus 로고
    • Malware classification with recurrent networks
    • R. Pascanu et al., "Malware classification with recurrent networks, " in Proc of the IEEE ICASSP. 2015, pp. 1916-1920.
    • (2015) Proc of the IEEE ICASSP. , pp. 1916-1920
    • Pascanu, R.1
  • 12
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, et al., "Imagenet classification with deep convolutional neural networks, " in Advances in neural information processing systems, 2012, pp. 1097-1105.
    • (2012) Advances in Neural Information Processing Systems , pp. 1097-1105
    • Krizhevsky, A.1
  • 13
    • 84890516914 scopus 로고    scopus 로고
    • Large-scale malware classification using random projections, neural networks
    • G. E. Dahl, et al., "Large-scale malware classification using random projections, neural networks, " in Proc. of the IEEE ICASSP. 2013, pp. 3422-3426.
    • (2013) Proc. of the IEEE ICASSP. , pp. 3422-3426
    • Dahl, G.E.1
  • 14
    • 84861776914 scopus 로고    scopus 로고
    • Multi-column deep neural network for traffic sign classification
    • D. Ciresan et al., "Multi-column deep neural network for traffic sign classification, " Neural Networks, vol. 32, pp. 333-338, 2012.
    • (2012) Neural Networks , vol.32 , pp. 333-338
    • Ciresan, D.1
  • 15
    • 78650808526 scopus 로고    scopus 로고
    • Pattern recognition
    • Springer
    • C. M. Bishop, "Pattern recognition, " Machine Learning, Springer, 2006.
    • (2006) Machine Learning
    • Bishop, C.M.1
  • 18
    • 0008554931 scopus 로고
    • A focused back-propagation algorithm for temporal pattern recognition
    • M. C. Mozer, "A focused back-propagation algorithm for temporal pattern recognition, " Complex systems, vol. 3, no. 4, pp. 349-381, 1989.
    • (1989) Complex Systems , vol.3 , Issue.4 , pp. 349-381
    • Mozer, M.C.1
  • 19
    • 0000903748 scopus 로고
    • Generalization of backpropagation with application to a recurrent gas market model
    • P. J. Werbos, "Generalization of backpropagation with application to a recurrent gas market model, " Neural Networks, vol. 1(4), pp. 339-356, 1988.
    • (1988) Neural Networks , vol.1 , Issue.4 , pp. 339-356
    • Werbos, P.J.1
  • 20
    • 0031573117 scopus 로고    scopus 로고
    • Long short-term memory
    • S. Hochreiter et al., "Long short-term memory, " Neural computation, vol. 9, no. 8, pp. 1735-1780, 1997.
    • (1997) Neural Computation , vol.9 , Issue.8 , pp. 1735-1780
    • Hochreiter, S.1
  • 24
    • 84906237242 scopus 로고    scopus 로고
    • Investigation of recurrent-neural-network architectures, learning methods for spoken language understanding
    • G. Mesnil et al., "Investigation of recurrent-neural-network architectures, learning methods for spoken language understanding." in INTERSPEECH, 2013, pp. 3771-3775.
    • (2013) Interspeech , pp. 3771-3775
    • Mesnil, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.