메뉴 건너뛰기




Volumn 2017-January, Issue , 2017, Pages 4141-4150

Deep feature flow for video recognition

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; IMAGE RECOGNITION; IMAGE SEGMENTATION; OBJECT DETECTION; SEMANTICS;

EID: 85041896573     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2017.441     Document Type: Conference Paper
Times cited : (607)

References (51)
  • 1
    • 85041891505 scopus 로고    scopus 로고
    • Exploiting semantic information and deep matching for optical flow
    • M. Bai, W. Luo, K. Kundu, and R. Urtasun. Exploiting semantic information and deep matching for optical flow. In ECCV, 2016
    • (2016) ECCV
    • Bai, M.1    Luo, W.2    Kundu, K.3    Urtasun, R.4
  • 2
    • 18844364899 scopus 로고    scopus 로고
    • High accuracy optical flow estimation based on a theory for warping
    • T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. In ECCV, 2004
    • (2004) ECCV
    • Brox, T.1    Bruhn, A.2    Papenberg, N.3    Weickert, J.4
  • 3
    • 79551562584 scopus 로고    scopus 로고
    • Large displacement optical flow: Descriptor matching in variational motion estimation
    • T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. TPAMI, 2011
    • (2011) TPAMI
    • Brox, T.1    Malik, J.2
  • 4
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected crfs
    • L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015
    • (2015) ICLR
    • Chen, L.-C.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 7
    • 84965117606 scopus 로고    scopus 로고
    • Binaryconnect: Training deep neural networks with binary weights during propagations
    • M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural networks with binary weights during propagations. In NIPS, 2015
    • (2015) NIPS
    • Courbariaux, M.1    Bengio, Y.2    David, J.-P.3
  • 8
    • 85018938177 scopus 로고    scopus 로고
    • R-fcn: Object detection via region-based fully convolutional networks
    • J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-based fully convolutional networks. In NIPS, 2016
    • (2016) NIPS
    • Dai, J.1    Li, Y.2    He, K.3    Sun, J.4
  • 12
    • 85029359197 scopus 로고    scopus 로고
    • Fast r-cnn
    • R. Girshick. Fast R-CNN. In ICCV, 2015
    • (2015) ICCV
    • Girshick, R.1
  • 13
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 14
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 15
    • 84973911419 scopus 로고    scopus 로고
    • Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
    • K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015
    • (2015) ICCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 16
    • 84986274465 scopus 로고    scopus 로고
    • Deep residual learning for image recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016
    • (2016) CVPR
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 19
    • 85041920864 scopus 로고    scopus 로고
    • Joint optical flow and temporally consistent semantic segmentation
    • J. Hur and S. Roth. Joint optical flow and temporally consistent semantic segmentation. In ECCV CVRSUAD Workshop, 2016
    • (2016) ECCV CVRSUAD Workshop
    • Hur, J.1    Roth, S.2
  • 20
    • 84969584486 scopus 로고    scopus 로고
    • Batch normalization: Accelerating deep network training by reducing internal covariate shift
    • S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015
    • (2015) ICML
    • Ioffe, S.1    Szegedy, C.2
  • 21
    • 84986272538 scopus 로고    scopus 로고
    • Slow and steady feature analysis: Higher order temporal coherence in video
    • D. Jayaraman and K. Grauman. Slow and steady feature analysis: higher order temporal coherence in video. In CVPR, 2016
    • (2016) CVPR
    • Jayaraman, D.1    Grauman, K.2
  • 23
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 24
    • 84986247643 scopus 로고    scopus 로고
    • Feature space optimization for semantic video segmentation
    • A. Kundu, V. Vineet, and V. Koltun. Feature space optimization for semantic video segmentation. In CVPR, 2016
    • (2016) CVPR
    • Kundu, A.1    Vineet, V.2    Koltun, V.3
  • 26
  • 28
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 29
    • 84886073305 scopus 로고    scopus 로고
    • Indoor segmentation and support inference from rgbd images
    • P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012
    • (2012) ECCV
    • Nathan Silberman, P.K.1    Hoiem, D.2    Fergus, R.3
  • 31
    • 84973882951 scopus 로고    scopus 로고
    • Flowing convnets for human pose estimation in videos
    • T. Pfister, J. Charles, and A. Zisserman. Flowing convnets for human pose estimation in videos. In ICCV, 2015
    • (2015) ICCV
    • Pfister, T.1    Charles, J.2    Zisserman, A.3
  • 34
    • 84960980241 scopus 로고    scopus 로고
    • Faster R-CNN: Towards real-time object detection with region proposal networks
    • S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015
    • (2015) NIPS
    • Ren, S.1    He, K.2    Girshick, R.3    Sun, J.4
  • 35
    • 84959237250 scopus 로고    scopus 로고
    • Epicflow: Edge-Preserving interpolation of correspondences for optical flow
    • J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow. In CVPR, 2015
    • (2015) CVPR
    • Revaud, J.1    Weinzaepfel, P.2    Harchaoui, Z.3    Schmid, C.4
  • 37
    • 84986328093 scopus 로고    scopus 로고
    • Optical flow with semantic segmentation and localized layers
    • L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black. Optical flow with semantic segmentation and localized layers. In CVPR, 2016
    • (2016) CVPR
    • Sevilla-Lara, L.1    Sun, D.2    Jampani, V.3    Black, M.J.4
  • 39
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015 3, 7
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 40
    • 84911395416 scopus 로고    scopus 로고
    • Dlsfa: Deeply-learned slow feature analysis for action recognition
    • L. Sun, K. Jia, T.-H. Chan, Y. Fang, G.Wang, and S. Yan. Dlsfa: deeply-learned slow feature analysis for action recognition. In CVPR, 2014
    • (2014) CVPR
    • Sun, L.1    Jia, K.2    Chan, T.-H.3    Fang, Y.4    Wang, G.5    Yan, S.6
  • 44
    • 84898830536 scopus 로고    scopus 로고
    • DeepFlow: Large displacement optical flow with deep matching
    • P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. DeepFlow: Large displacement optical flow with deep matching. In CVPR, 2013
    • (2013) CVPR
    • Weinzaepfel, P.1    Revaud, J.2    Harchaoui, Z.3    Schmid, C.4
  • 45
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L.Wiskott and T. J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural computation, 2002
    • (2002) Neural Computation
    • Wiskott, L.1    Sejnowski, T.J.2
  • 47
    • 84921476116 scopus 로고    scopus 로고
    • Visualizing and understanding convolutional networks
    • M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014
    • (2014) ECCV
    • Zeiler, M.D.1    Fergus, R.2
  • 48
    • 84994604648 scopus 로고    scopus 로고
    • Accelerating very deep convolutional networks for classification and detection
    • X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very deep convolutional networks for classification and detection. TPAMI, 2015
    • (2015) TPAMI
    • Zhang, X.1    Zou, J.2    He, K.3    Sun, J.4
  • 49
    • 84862907634 scopus 로고    scopus 로고
    • Slow feature analysis for human action recognition
    • Z. Zhang and D. Tao. Slow feature analysis for human action recognition. TPAMI, 2012
    • (2012) TPAMI
    • Zhang, Z.1    Tao, D.2
  • 51
    • 84877777295 scopus 로고    scopus 로고
    • Deep learning of invariant features via simulated fixations in video
    • W. Zou, S. Zhu, K. Yu, and A. Y. Ng. Deep learning of invariant features via simulated fixations in video. In NIPS, 2012
    • (2012) NIPS
    • Zou, W.1    Zhu, S.2    Yu, K.3    Ng, A.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.