-
1
-
-
85041891505
-
Exploiting semantic information and deep matching for optical flow
-
M. Bai, W. Luo, K. Kundu, and R. Urtasun. Exploiting semantic information and deep matching for optical flow. In ECCV, 2016
-
(2016)
ECCV
-
-
Bai, M.1
Luo, W.2
Kundu, K.3
Urtasun, R.4
-
2
-
-
18844364899
-
High accuracy optical flow estimation based on a theory for warping
-
T. Brox, A. Bruhn, N. Papenberg, and J. Weickert. High accuracy optical flow estimation based on a theory for warping. In ECCV, 2004
-
(2004)
ECCV
-
-
Brox, T.1
Bruhn, A.2
Papenberg, N.3
Weickert, J.4
-
3
-
-
79551562584
-
Large displacement optical flow: Descriptor matching in variational motion estimation
-
T. Brox and J. Malik. Large displacement optical flow: Descriptor matching in variational motion estimation. TPAMI, 2011
-
(2011)
TPAMI
-
-
Brox, T.1
Malik, J.2
-
4
-
-
85083954148
-
Semantic image segmentation with deep convolutional nets and fully connected crfs
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected crfs. In ICLR, 2015
-
(2015)
ICLR
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
5
-
-
84990051868
-
-
arXiv preprint
-
L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. arXiv preprint, 2016
-
(2016)
Deeplab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected Crfs
-
-
Chen, L.-C.1
Papandreou, G.2
Kokkinos, I.3
Murphy, K.4
Yuille, A.L.5
-
6
-
-
84986255616
-
The cityscapes dataset for semantic urban scene understanding
-
M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke, S. Roth, and B. Schiele. The cityscapes dataset for semantic urban scene understanding. In CVPR, 2016
-
(2016)
CVPR
-
-
Cordts, M.1
Omran, M.2
Ramos, S.3
Rehfeld, T.4
Enzweiler, M.5
Benenson, R.6
Franke, U.7
Roth, S.8
Schiele, B.9
-
7
-
-
84965117606
-
Binaryconnect: Training deep neural networks with binary weights during propagations
-
M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural networks with binary weights during propagations. In NIPS, 2015
-
(2015)
NIPS
-
-
Courbariaux, M.1
Bengio, Y.2
David, J.-P.3
-
8
-
-
85018938177
-
R-fcn: Object detection via region-based fully convolutional networks
-
J. Dai, Y. Li, K. He, and J. Sun. R-fcn: Object detection via region-based fully convolutional networks. In NIPS, 2016
-
(2016)
NIPS
-
-
Dai, J.1
Li, Y.2
He, K.3
Sun, J.4
-
9
-
-
84973904859
-
Flownet: Learning optical flow with convolutional networks
-
A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, and V. Golkov. Flownet: Learning optical flow with convolutional networks. In ICCV, 2015
-
(2015)
ICCV
-
-
Dosovitskiy, A.1
Fischer, P.2
Ilg, E.3
Hausser, P.4
Hazirbas, C.5
Golkov, V.6
-
10
-
-
85041891369
-
-
arXiv preprint
-
M. Fayyaz, M. H. Saffar, M. Sabokrou, M. Fathy, and R. Klette. STFCN: spatio-temporal FCN for semantic video segmentation. arXiv preprint, 2016
-
(2016)
STFCN: Spatio-temporal FCN for Semantic Video Segmentation
-
-
Fayyaz, M.1
Saffar, M.H.2
Sabokrou, M.3
Fathy, M.4
Klette, R.5
-
11
-
-
84898817849
-
A unified video segmentation benchmark: Annotation, metrics and analysis
-
F. Galasso, N. Shankar Nagaraja, T. Jimenez Cardenas, T. Brox, and B. Schiele. A unified video segmentation benchmark: Annotation, metrics and analysis. In ICCV, 2013
-
(2013)
ICCV
-
-
Galasso, F.1
Shankar Nagaraja, N.2
Jimenez Cardenas, T.3
Brox, T.4
Schiele, B.5
-
12
-
-
85029359197
-
Fast r-cnn
-
R. Girshick. Fast R-CNN. In ICCV, 2015
-
(2015)
ICCV
-
-
Girshick, R.1
-
13
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
14
-
-
84928278589
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV, 2014
-
(2014)
ECCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
15
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on imagenet classification
-
K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In ICCV, 2015
-
(2015)
ICCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
16
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In CVPR, 2016
-
(2016)
CVPR
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
18
-
-
85019231773
-
-
arXiv preprint
-
I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations. arXiv preprint, 2016
-
(2016)
Quantized Neural Networks: Training Neural Networks with Low Precision Weights and Activations
-
-
Hubara, I.1
Courbariaux, M.2
Soudry, D.3
El-Yaniv, R.4
Bengio, Y.5
-
19
-
-
85041920864
-
Joint optical flow and temporally consistent semantic segmentation
-
J. Hur and S. Roth. Joint optical flow and temporally consistent semantic segmentation. In ECCV CVRSUAD Workshop, 2016
-
(2016)
ECCV CVRSUAD Workshop
-
-
Hur, J.1
Roth, S.2
-
20
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
S. Ioffe and C. Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
21
-
-
84986272538
-
Slow and steady feature analysis: Higher order temporal coherence in video
-
D. Jayaraman and K. Grauman. Slow and steady feature analysis: higher order temporal coherence in video. In CVPR, 2016
-
(2016)
CVPR
-
-
Jayaraman, D.1
Grauman, K.2
-
22
-
-
84996824229
-
T-cnn: Tubelets with convolutional neural networks for object detection from videos
-
K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang, and X. Wang. T-cnn: Tubelets with convolutional neural networks for object detection from videos. In CVPR, 2016
-
(2016)
CVPR
-
-
Kang, K.1
Li, H.2
Yan, J.3
Zeng, X.4
Yang, B.5
Xiao, T.6
Zhang, C.7
Wang, Z.8
Wang, R.9
Wang, X.10
-
23
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
24
-
-
84986247643
-
Feature space optimization for semantic video segmentation
-
A. Kundu, V. Vineet, and V. Koltun. Feature space optimization for semantic video segmentation. In CVPR, 2016
-
(2016)
CVPR
-
-
Kundu, A.1
Vineet, V.2
Koltun, V.3
-
26
-
-
69249140869
-
Sift flow: Dense correspondence across difference scenes
-
C. Liu, J. Yuen, A. Torralba, J. Sivic, and W. T. Freeman. Sift flow: dense correspondence across difference scenes. In ECCV, 2008
-
(2008)
ECCV
-
-
Liu, C.1
Yuen, J.2
Torralba, A.3
Sivic, J.4
Freeman, W.T.5
-
28
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015
-
(2015)
CVPR
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
29
-
-
84886073305
-
Indoor segmentation and support inference from rgbd images
-
P. K. Nathan Silberman, Derek Hoiem and R. Fergus. Indoor segmentation and support inference from rgbd images. In ECCV, 2012
-
(2012)
ECCV
-
-
Nathan Silberman, P.K.1
Hoiem, D.2
Fergus, R.3
-
30
-
-
84948382785
-
Deepid-net: Deformable deep convolutional neural networks for object detection
-
W. Ouyang, X.Wang, X. Zeng, S. Qiu, P. Luo, Y. Tian, H. Li, S. Yang, Z. Wang, and C.-C. Loy. Deepid-net: Deformable deep convolutional neural networks for object detection. In CVPR, 2015
-
(2015)
CVPR
-
-
Ouyang, W.1
Wang, X.2
Zeng, X.3
Qiu, S.4
Luo, P.5
Tian, Y.6
Li, H.7
Yang, S.8
Wang, Z.9
Loy, C.-C.10
-
31
-
-
84973882951
-
Flowing convnets for human pose estimation in videos
-
T. Pfister, J. Charles, and A. Zisserman. Flowing convnets for human pose estimation in videos. In ICCV, 2015
-
(2015)
ICCV
-
-
Pfister, T.1
Charles, J.2
Zisserman, A.3
-
34
-
-
84960980241
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards real-time object detection with region proposal networks. In NIPS, 2015
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
35
-
-
84959237250
-
Epicflow: Edge-Preserving interpolation of correspondences for optical flow
-
J. Revaud, P. Weinzaepfel, Z. Harchaoui, and C. Schmid. EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow. In CVPR, 2015
-
(2015)
CVPR
-
-
Revaud, J.1
Weinzaepfel, P.2
Harchaoui, Z.3
Schmid, C.4
-
36
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. IJCV, 2015
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.C.11
Fei-Fei, L.12
-
37
-
-
84986328093
-
Optical flow with semantic segmentation and localized layers
-
L. Sevilla-Lara, D. Sun, V. Jampani, and M. J. Black. Optical flow with semantic segmentation and localized layers. In CVPR, 2016
-
(2016)
CVPR
-
-
Sevilla-Lara, L.1
Sun, D.2
Jampani, V.3
Black, M.J.4
-
39
-
-
85083953063
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015 3, 7
-
(2015)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
40
-
-
84911395416
-
Dlsfa: Deeply-learned slow feature analysis for action recognition
-
L. Sun, K. Jia, T.-H. Chan, Y. Fang, G.Wang, and S. Yan. Dlsfa: deeply-learned slow feature analysis for action recognition. In CVPR, 2014
-
(2014)
CVPR
-
-
Sun, L.1
Jia, K.2
Chan, T.-H.3
Fang, Y.4
Wang, G.5
Yan, S.6
-
41
-
-
84937522268
-
Going deeper with convolutions
-
C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In CVPR, 2015
-
(2015)
CVPR
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
42
-
-
84986296808
-
Rethinking the inception architecture for computer vision
-
C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. In CVPR, 2016
-
(2016)
CVPR
-
-
Szegedy, C.1
Vanhoucke, V.2
Ioffe, S.3
Shlens, J.4
Wojna, Z.5
-
45
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
L.Wiskott and T. J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural computation, 2002
-
(2002)
Neural Computation
-
-
Wiskott, L.1
Sejnowski, T.J.2
-
47
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In ECCV, 2014
-
(2014)
ECCV
-
-
Zeiler, M.D.1
Fergus, R.2
-
48
-
-
84994604648
-
Accelerating very deep convolutional networks for classification and detection
-
X. Zhang, J. Zou, K. He, and J. Sun. Accelerating very deep convolutional networks for classification and detection. TPAMI, 2015
-
(2015)
TPAMI
-
-
Zhang, X.1
Zou, J.2
He, K.3
Sun, J.4
-
49
-
-
84862907634
-
Slow feature analysis for human action recognition
-
Z. Zhang and D. Tao. Slow feature analysis for human action recognition. TPAMI, 2012
-
(2012)
TPAMI
-
-
Zhang, Z.1
Tao, D.2
-
50
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, and P. Torr. Conditional random fields as recurrent neural networks. In ICCV, 2015
-
(2015)
ICCV
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, P.8
-
51
-
-
84877777295
-
Deep learning of invariant features via simulated fixations in video
-
W. Zou, S. Zhu, K. Yu, and A. Y. Ng. Deep learning of invariant features via simulated fixations in video. In NIPS, 2012
-
(2012)
NIPS
-
-
Zou, W.1
Zhu, S.2
Yu, K.3
Ng, A.Y.4
|