메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 3852-3861

Slow and Steady Feature Analysis: Higher Order Temporal Coherence in Video

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; NEURAL NETWORKS;

EID: 84986272538     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.418     Document Type: Conference Paper
Times cited : (166)

References (47)
  • 1
    • 85009874356 scopus 로고    scopus 로고
    • Cuda-convnet
    • Cuda-convnet. https://code.google.com/p/cuda-convnet/.
  • 3
    • 84858720675 scopus 로고    scopus 로고
    • Slow, decorrelated features for pretraining complex cell-like networks
    • J. Bergstra and Y. Bengio. Slow, decorrelated features for pretraining complex cell-like networks. In NIPS, 2009.
    • (2009) NIPS
    • Bergstra, J.1    Bengio, Y.2
  • 4
    • 27244444336 scopus 로고    scopus 로고
    • Slow feature analysis yields a rich repertoire of complex cell properties
    • P. Berkes and L. Wiskott. Slow feature analysis yields a rich repertoire of complex cell properties. Journal of vision, 5(6), 2005.
    • (2005) Journal of Vision , vol.5 , Issue.6
    • Berkes, P.1    Wiskott, L.2
  • 8
    • 84937964776 scopus 로고    scopus 로고
    • Discriminative unsupervised feature learning with convolutional neural networks
    • A. Dosovitskiy, J.T. Springenberg, M. Riedmiller, and T. Brox. Discriminative Unsupervised Feature Learning with Convolutional Neural Networks. NIPS, 2014.
    • (2014) NIPS
    • Dosovitskiy, A.1    Springenberg, J.T.2    Riedmiller, M.3    Brox, T.4
  • 10
    • 84866704163 scopus 로고    scopus 로고
    • Are we ready for autonomous driving? the KITTI vision benchmark suite
    • A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the KITTI vision benchmark suite. CVPR, 2012.
    • (2012) CVPR
    • Geiger, A.1    Lenz, P.2    Urtasun, R.3
  • 11
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J.Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 13
    • 84965139813 scopus 로고    scopus 로고
    • Learning to linearize under uncertainty
    • Ross Goroshin, Michael F Mathieu, and Yann LeCun. Learning to linearize under uncertainty. In NIPS, 2015.
    • (2015) NIPS
    • Goroshin, R.1    Mathieu, M.F.2    LeCun, Y.3
  • 14
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality Reduction by Learning an Invariant Mapping. CVPR, 2006.
    • (2006) CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 16
    • 0037365920 scopus 로고    scopus 로고
    • Simple-cell-like receptive fields maximize temporal coherence in natural video
    • J. Hurri and A. Hyvarinen. Simple-cell-like receptive fields maximize temporal coherence in natural video. Neural Computation, 15(3), 2003.
    • (2003) Neural Computation , vol.15 , Issue.3
    • Hurri, J.1    Hyvarinen, A.2
  • 17
    • 84973897623 scopus 로고    scopus 로고
    • Learning image representations tied to ego-motion
    • D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. ICCV, 2015.
    • (2015) ICCV
    • Jayaraman, D.1    Grauman, K.2
  • 22
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 24
    • 5044231640 scopus 로고    scopus 로고
    • Learning methods for generic object recognition with invariance to pose and lighting
    • Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. CVPR, 2004.
    • (2004) CVPR
    • LeCun, Y.1    Huang, F.J.2    Bottou, L.3
  • 25
    • 84959210421 scopus 로고    scopus 로고
    • Understanding image representations by measuring their equivariance and equivalence
    • Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equivariance and equivalence. CVPR, 2015.
    • (2015) CVPR
    • Lenc, K.1    Vedaldi, A.2
  • 26
    • 51749124671 scopus 로고    scopus 로고
    • Unsupervised natural experience rapidly alters invariant object representation in visual cortex
    • N. Li and J. DiCarlo. Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science, 321, 2008.
    • (2008) Science , vol.321
    • Li, N.1    DiCarlo, J.2
  • 27
    • 84898833715 scopus 로고    scopus 로고
    • Incremental slow feature analysis with indefinite kernel for online temporal video segmentation
    • S. Liwicki, S. Zafeiriou, and M. Pantic. Incremental slow feature analysis with indefinite kernel for online temporal video segmentation. In ACCV, 2012.
    • (2012) ACCV
    • Liwicki, S.1    Zafeiriou, S.2    Pantic, M.3
  • 28
    • 84911449533 scopus 로고    scopus 로고
    • Learning to relate images
    • R. Memisevic. Learning to relate images. PAMI, 2013.
    • (2013) PAMI
    • Memisevic, R.1
  • 29
    • 84937955008 scopus 로고    scopus 로고
    • Modeling Deep Temporal Dependencies with Recurrent Grammar Cells
    • V. Michalski, R. Memisevic, and K. Konda. Modeling Deep Temporal Dependencies with Recurrent Grammar Cells. NIPS, 2014.
    • (2014) NIPS
    • Michalski, V.1    Memisevic, R.2    Konda, K.3
  • 30
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • H. Mobahi, R. Collobert, and J.Weston. Deep Learning from Temporal Coherence in Video. ICML, 2009.
    • (2009) ICML
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 31
    • 84898450206 scopus 로고    scopus 로고
    • Temporal relations in videos for unsupervised activity analysis
    • F. Nater, H. Grabner, and L. Van Gool. Temporal relations in videos for unsupervised activity analysis. In BMVC, 2011.
    • (2011) BMVC
    • Nater, F.1    Grabner, H.2    Van Gool, L.3
  • 32
    • 84911449395 scopus 로고    scopus 로고
    • Learning and transferring mid-level image representations using convolutional neural networks
    • M. Oquab, L. Bottou, I. Laptev, and J.Sivic. Learning and transferring mid-level image representations using convolutional neural networks. CVPR, 2014.
    • (2014) CVPR
    • Oquab, M.1    Bottou, L.2    Laptev, I.3    Sivic, J.4
  • 35
    • 84866705413 scopus 로고    scopus 로고
    • Learning rotation-aware features: From invariant priors to equivariant descriptors
    • U. Schmidt and S. Roth. Learning rotation-aware features: From invariant priors to equivariant descriptors. CVPR, 2012.
    • (2012) CVPR
    • Schmidt, U.1    Roth, S.2
  • 36
    • 84945900998 scopus 로고    scopus 로고
    • Best practices for convolutional neural networks applied to visual document analysis
    • P. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks applied to visual document analysis. ICDAR, 2003.
    • (2003) ICDAR
    • Simard, P.1    Steinkraus, D.2    Platt, J.C.3
  • 37
    • 84965161185 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2014.
    • (2014) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 38
    • 56449089103 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol. Extracting and composing robust features with denoising autoencoders. ICML, 2008.
    • (2008) ICML
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.A.4
  • 40
    • 84973880490 scopus 로고    scopus 로고
    • Dense optical flow prediction from a static image
    • J. Walker, A. Gupta, and M. Hebert. Dense optical flow prediction from a static image. In ICCV, 2015.
    • (2015) ICCV
    • Walker, J.1    Gupta, A.2    Hebert, M.3
  • 41
    • 84973889989 scopus 로고    scopus 로고
    • Unsupervised learning of visual representations using videos
    • X.Wang and A. Gupta. Unsupervised learning of visual representations using videos. ICCV, 2015.
    • (2015) ICCV
    • Wang, X.1    Gupta, A.2
  • 42
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L. Wiskott and T. J. Sejnowski. Slow feature analysis: unsupervised learning of invariances. Neural computation, 2002.
    • (2002) Neural Computation
    • Wiskott, L.1    Sejnowski, T.J.2
  • 43
    • 77955988947 scopus 로고    scopus 로고
    • SUN database: Large-scale scene recognition from abbey to zoo
    • J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition from abbey to zoo. CVPR, 2010.
    • (2010) CVPR
    • Xiao, J.1    Hays, J.2    Ehinger, K.A.3    Oliva, A.4    Torralba, A.5
  • 45
    • 84862907634 scopus 로고    scopus 로고
    • Slow feature analysis for human action recognition
    • Z. Zhang and D. Tao. Slow feature analysis for human action recognition. PAMI, 2012.
    • (2012) PAMI
    • Zhang, Z.1    Tao, D.2
  • 46
    • 84877777295 scopus 로고    scopus 로고
    • Deep learning of invariant features via simulated fixations in video
    • W. Zou, S. Zhu, K. Yu, and A. Ng. Deep learning of invariant features via simulated fixations in video. NIPS, 2012.
    • (2012) NIPS
    • Zou, W.1    Zhu, S.2    Yu, K.3    Ng, A.4
  • 47
    • 84872523448 scopus 로고    scopus 로고
    • Unsupervised learning of visual invariance with temporal coherence
    • Will Y Zou, Andrew Y Ng, and Kai Yu. Unsupervised learning of visual invariance with temporal coherence. In NIPS Workshop on Deep Learning, 2011.
    • (2011) NIPS Workshop on Deep Learning
    • Zou, W.Y.1    Ng, A.Y.2    Yu, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.