-
1
-
-
85009874356
-
-
Cuda-convnet
-
Cuda-convnet. https://code.google.com/p/cuda-convnet/.
-
-
-
-
3
-
-
84858720675
-
Slow, decorrelated features for pretraining complex cell-like networks
-
J. Bergstra and Y. Bengio. Slow, decorrelated features for pretraining complex cell-like networks. In NIPS, 2009.
-
(2009)
NIPS
-
-
Bergstra, J.1
Bengio, Y.2
-
4
-
-
27244444336
-
Slow feature analysis yields a rich repertoire of complex cell properties
-
P. Berkes and L. Wiskott. Slow feature analysis yields a rich repertoire of complex cell properties. Journal of vision, 5(6), 2005.
-
(2005)
Journal of Vision
, vol.5
, Issue.6
-
-
Berkes, P.1
Wiskott, L.2
-
6
-
-
85198028989
-
Imagenet: A large-scale hierarchical image database
-
J. Deng, W. Dong, R. Socher, L.J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, 2009.
-
(2009)
CVPR
-
-
Deng, J.1
Dong, W.2
Socher, R.3
Li, L.J.4
Li, K.5
Fei-Fei, L.6
-
7
-
-
85009880339
-
-
arXiv preprint arXiv:1310.1531
-
Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng, and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. arXiv preprint arXiv:1310.1531, 2013.
-
(2013)
Decaf: A Deep Convolutional Activation Feature for Generic Visual Recognition
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
8
-
-
84937964776
-
Discriminative unsupervised feature learning with convolutional neural networks
-
A. Dosovitskiy, J.T. Springenberg, M. Riedmiller, and T. Brox. Discriminative Unsupervised Feature Learning with Convolutional Neural Networks. NIPS, 2014.
-
(2014)
NIPS
-
-
Dosovitskiy, A.1
Springenberg, J.T.2
Riedmiller, M.3
Brox, T.4
-
9
-
-
77951298115
-
The pascal visual object classes (voc) challenge
-
M. Everingham, L. Van Gool, C. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. IJCV, 2010.
-
(2010)
IJCV
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.3
Winn, J.4
Zisserman, A.5
-
10
-
-
84866704163
-
Are we ready for autonomous driving? the KITTI vision benchmark suite
-
A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the KITTI vision benchmark suite. CVPR, 2012.
-
(2012)
CVPR
-
-
Geiger, A.1
Lenz, P.2
Urtasun, R.3
-
11
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
R. Girshick, J. Donahue, T. Darrell, and J.Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
12
-
-
85082465137
-
Unsupervised learning of spatiotemporally coherent metrics
-
R. Goroshin, J. Bruna, J. Tompson, D. Eigen, and Y. LeCun. Unsupervised Learning of Spatiotemporally Coherent Metrics. ICCV, 2014.
-
(2014)
ICCV
-
-
Goroshin, R.1
Bruna, J.2
Tompson, J.3
Eigen, D.4
LeCun, Y.5
-
13
-
-
84965139813
-
Learning to linearize under uncertainty
-
Ross Goroshin, Michael F Mathieu, and Yann LeCun. Learning to linearize under uncertainty. In NIPS, 2015.
-
(2015)
NIPS
-
-
Goroshin, R.1
Mathieu, M.F.2
LeCun, Y.3
-
14
-
-
33845594569
-
Dimensionality reduction by learning an invariant mapping
-
R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality Reduction by Learning an Invariant Mapping. CVPR, 2006.
-
(2006)
CVPR
-
-
Hadsell, R.1
Chopra, S.2
LeCun, Y.3
-
16
-
-
0037365920
-
Simple-cell-like receptive fields maximize temporal coherence in natural video
-
J. Hurri and A. Hyvarinen. Simple-cell-like receptive fields maximize temporal coherence in natural video. Neural Computation, 15(3), 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.3
-
-
Hurri, J.1
Hyvarinen, A.2
-
17
-
-
84973897623
-
Learning image representations tied to ego-motion
-
D. Jayaraman and K. Grauman. Learning image representations tied to ego-motion. ICCV, 2015.
-
(2015)
ICCV
-
-
Jayaraman, D.1
Grauman, K.2
-
19
-
-
85009867858
-
-
arXiv
-
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, Sergio S. Guadarrama, and T. Darrell. Caffe: Convolutional architecture for fast feature embedding. arXiv, 2014.
-
(2014)
Caffe: Convolutional Architecture for Fast Feature Embedding
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.6
Guadarrama, S.S.7
Darrell, T.8
-
20
-
-
84919772013
-
Recognizing image style
-
S. Karayev, M. Trentacoste, H. Han, A. Agarwala, T. Darrell, A. Hertzmann, and H. Winnemoeller. Recognizing image style. BMVC, 2014.
-
(2014)
BMVC
-
-
Karayev, S.1
Trentacoste, M.2
Han, H.3
Agarwala, A.4
Darrell, T.5
Hertzmann, A.6
Winnemoeller, H.7
-
22
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet classification with deep convolutional neural networks. In NIPS, 2012.
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
23
-
-
84856682691
-
HMDB: A large video database for human motion recognition
-
H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre. HMDB: a large video database for human motion recognition. ICCV, 2011.
-
(2011)
ICCV
-
-
Kuehne, H.1
Jhuang, H.2
Garrote, E.3
Poggio, T.4
Serre, T.5
-
24
-
-
5044231640
-
Learning methods for generic object recognition with invariance to pose and lighting
-
Y. LeCun, F. J. Huang, and L. Bottou. Learning methods for generic object recognition with invariance to pose and lighting. CVPR, 2004.
-
(2004)
CVPR
-
-
LeCun, Y.1
Huang, F.J.2
Bottou, L.3
-
25
-
-
84959210421
-
Understanding image representations by measuring their equivariance and equivalence
-
Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring their equivariance and equivalence. CVPR, 2015.
-
(2015)
CVPR
-
-
Lenc, K.1
Vedaldi, A.2
-
26
-
-
51749124671
-
Unsupervised natural experience rapidly alters invariant object representation in visual cortex
-
N. Li and J. DiCarlo. Unsupervised natural experience rapidly alters invariant object representation in visual cortex. Science, 321, 2008.
-
(2008)
Science
, vol.321
-
-
Li, N.1
DiCarlo, J.2
-
27
-
-
84898833715
-
Incremental slow feature analysis with indefinite kernel for online temporal video segmentation
-
S. Liwicki, S. Zafeiriou, and M. Pantic. Incremental slow feature analysis with indefinite kernel for online temporal video segmentation. In ACCV, 2012.
-
(2012)
ACCV
-
-
Liwicki, S.1
Zafeiriou, S.2
Pantic, M.3
-
28
-
-
84911449533
-
Learning to relate images
-
R. Memisevic. Learning to relate images. PAMI, 2013.
-
(2013)
PAMI
-
-
Memisevic, R.1
-
29
-
-
84937955008
-
Modeling Deep Temporal Dependencies with Recurrent Grammar Cells
-
V. Michalski, R. Memisevic, and K. Konda. Modeling Deep Temporal Dependencies with Recurrent Grammar Cells. NIPS, 2014.
-
(2014)
NIPS
-
-
Michalski, V.1
Memisevic, R.2
Konda, K.3
-
30
-
-
71149084945
-
Deep learning from temporal coherence in video
-
H. Mobahi, R. Collobert, and J.Weston. Deep Learning from Temporal Coherence in Video. ICML, 2009.
-
(2009)
ICML
-
-
Mobahi, H.1
Collobert, R.2
Weston, J.3
-
31
-
-
84898450206
-
Temporal relations in videos for unsupervised activity analysis
-
F. Nater, H. Grabner, and L. Van Gool. Temporal relations in videos for unsupervised activity analysis. In BMVC, 2011.
-
(2011)
BMVC
-
-
Nater, F.1
Grabner, H.2
Van Gool, L.3
-
32
-
-
84911449395
-
Learning and transferring mid-level image representations using convolutional neural networks
-
M. Oquab, L. Bottou, I. Laptev, and J.Sivic. Learning and transferring mid-level image representations using convolutional neural networks. CVPR, 2014.
-
(2014)
CVPR
-
-
Oquab, M.1
Bottou, L.2
Laptev, I.3
Sivic, J.4
-
33
-
-
84965108042
-
-
arXiv
-
M. Ranzato, A. Szlam, J. Bruna, M. Mathieu, R. Collobert, and S. Chopra. Video (language) modeling: a baseline for generative models of natural videos. arXiv, 2014.
-
(2014)
Video (Language) Modeling: A Baseline for Generative Models of Natural Videos
-
-
Ranzato, M.1
Szlam, A.2
Bruna, J.3
Mathieu, M.4
Collobert, R.5
Chopra, S.6
-
34
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. Berg, and L. Fei-Fei. Imagenet large scale visual recognition challenge. IJCV, 2015.
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.10
Berg, A.11
Fei-Fei, L.12
-
35
-
-
84866705413
-
Learning rotation-aware features: From invariant priors to equivariant descriptors
-
U. Schmidt and S. Roth. Learning rotation-aware features: From invariant priors to equivariant descriptors. CVPR, 2012.
-
(2012)
CVPR
-
-
Schmidt, U.1
Roth, S.2
-
36
-
-
84945900998
-
Best practices for convolutional neural networks applied to visual document analysis
-
P. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolutional neural networks applied to visual document analysis. ICDAR, 2003.
-
(2003)
ICDAR
-
-
Simard, P.1
Steinkraus, D.2
Platt, J.C.3
-
37
-
-
84965161185
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. ICLR, 2014.
-
(2014)
ICLR
-
-
Simonyan, K.1
Zisserman, A.2
-
38
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
P. Vincent, H. Larochelle, Y. Bengio, and P.A. Manzagol. Extracting and composing robust features with denoising autoencoders. ICML, 2008.
-
(2008)
ICML
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.A.4
-
40
-
-
84973880490
-
Dense optical flow prediction from a static image
-
J. Walker, A. Gupta, and M. Hebert. Dense optical flow prediction from a static image. In ICCV, 2015.
-
(2015)
ICCV
-
-
Walker, J.1
Gupta, A.2
Hebert, M.3
-
41
-
-
84973889989
-
Unsupervised learning of visual representations using videos
-
X.Wang and A. Gupta. Unsupervised learning of visual representations using videos. ICCV, 2015.
-
(2015)
ICCV
-
-
Wang, X.1
Gupta, A.2
-
42
-
-
0036546660
-
Slow feature analysis: Unsupervised learning of invariances
-
L. Wiskott and T. J. Sejnowski. Slow feature analysis: unsupervised learning of invariances. Neural computation, 2002.
-
(2002)
Neural Computation
-
-
Wiskott, L.1
Sejnowski, T.J.2
-
43
-
-
77955988947
-
SUN database: Large-scale scene recognition from abbey to zoo
-
J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba. SUN database: Large-scale scene recognition from abbey to zoo. CVPR, 2010.
-
(2010)
CVPR
-
-
Xiao, J.1
Hays, J.2
Ehinger, K.A.3
Oliva, A.4
Torralba, A.5
-
44
-
-
84898820027
-
Learning slow features for behaviour analysis
-
L. Zafeiriou, M. Nicolaou, S. Zafeiriou, S. Nikitidis, and M. Pantic. Learning slow features for behaviour analysis. In ICCV, 2013.
-
(2013)
ICCV
-
-
Zafeiriou, L.1
Nicolaou, M.2
Zafeiriou, S.3
Nikitidis, S.4
Pantic, M.5
-
45
-
-
84862907634
-
Slow feature analysis for human action recognition
-
Z. Zhang and D. Tao. Slow feature analysis for human action recognition. PAMI, 2012.
-
(2012)
PAMI
-
-
Zhang, Z.1
Tao, D.2
-
46
-
-
84877777295
-
Deep learning of invariant features via simulated fixations in video
-
W. Zou, S. Zhu, K. Yu, and A. Ng. Deep learning of invariant features via simulated fixations in video. NIPS, 2012.
-
(2012)
NIPS
-
-
Zou, W.1
Zhu, S.2
Yu, K.3
Ng, A.4
-
47
-
-
84872523448
-
Unsupervised learning of visual invariance with temporal coherence
-
Will Y Zou, Andrew Y Ng, and Kai Yu. Unsupervised learning of visual invariance with temporal coherence. In NIPS Workshop on Deep Learning, 2011.
-
(2011)
NIPS Workshop on Deep Learning
-
-
Zou, W.Y.1
Ng, A.Y.2
Yu, K.3
|