메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 3168-3175

Feature Space Optimization for Semantic Video Segmentation

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; IMAGE SEGMENTATION; SEMANTICS;

EID: 84986247643     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.345     Document Type: Conference Paper
Times cited : (210)

References (31)
  • 2
    • 56049086147 scopus 로고    scopus 로고
    • Semantic object classes in video: A high-definition ground truth database
    • G. J. Brostow, J. Fauqueur, and R. Cipolla. Semantic object classes in video: A high-definition ground truth database. Pattern Recognition Letters, 30(2), 2009.
    • (2009) Pattern Recognition Letters , vol.30 , Issue.2
    • Brostow, G.J.1    Fauqueur, J.2    Cipolla, R.3
  • 3
    • 79551562584 scopus 로고    scopus 로고
    • Large displacement optical flow: Descriptor matching in variational motion estimation
    • T. Brox and J. Malik. Large displacement optical flow: descriptor matching in variational motion estimation. PAMI, 33(3), 2011.
    • (2011) PAMI , vol.33 , Issue.3
    • Brox, T.1    Malik, J.2
  • 4
    • 85083954148 scopus 로고    scopus 로고
    • Semantic image segmentation with deep convolutional nets and fully connected CRFs
    • L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille. Semantic image segmentation with deep convolutional nets and fully connected CRFs. In ICLR, 2015.
    • (2015) ICLR
    • Chen, L.1    Papandreou, G.2    Kokkinos, I.3    Murphy, K.4    Yuille, A.L.5
  • 5
    • 84986294573 scopus 로고    scopus 로고
    • Full flow: Optical flow estimation by global optimization over regular grids
    • Q. Chen and V. Koltun. Full flow: Optical flow estimation by global optimization over regular grids. In CVPR, 2016.
    • (2016) CVPR
    • Chen, Q.1    Koltun, V.2
  • 7
    • 84947781852 scopus 로고    scopus 로고
    • Fast edge detection using structured forests
    • P. Dollár and C. L. Zitnick. Fast edge detection using structured forests. PAMI, 37(8), 2015.
    • (2015) PAMI , vol.37 , Issue.8
    • Dollár, P.1    Zitnick, C.L.2
  • 9
    • 79551518880 scopus 로고    scopus 로고
    • MRF energy minimization and beyond via dual decomposition
    • N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond via dual decomposition. PAMI, 33(3), 2011.
    • (2011) PAMI , vol.33 , Issue.3
    • Komodakis, N.1    Paragios, N.2    Tziritas, G.3
  • 10
    • 85162351107 scopus 로고    scopus 로고
    • Efficient inference in fully connected CRFs with Gaussian edge potentials
    • P. Krähenbühl and V. Koltun. Efficient inference in fully connected CRFs with Gaussian edge potentials. In NIPS, 2011.
    • (2011) NIPS
    • Krähenbühl, P.1    Koltun, V.2
  • 11
    • 84897536915 scopus 로고    scopus 로고
    • Parameter learning and convergent inference for dense random fields
    • P. Krähenbühl and V. Koltun. Parameter learning and convergent inference for dense random fields. In ICML, 2013.
    • (2013) ICML
    • Krähenbühl, P.1    Koltun, V.2
  • 12
    • 84880816518 scopus 로고    scopus 로고
    • Efficient preconditioning of Laplacian matrices for computer graphics
    • D. Krishnan, R. Fattal, and R. Szeliski. Efficient preconditioning of Laplacian matrices for computer graphics. ACM Transactions on Graphics, 32(4), 2013.
    • (2013) ACM Transactions on Graphics , vol.32 , Issue.4
    • Krishnan, D.1    Fattal, R.2    Szeliski, R.3
  • 13
    • 77953225585 scopus 로고    scopus 로고
    • Associative hierarchical CRFs for object class image segmentation
    • L. Ladicky, C. Russell, P. Kohli, and P. H. S. Torr. Associative hierarchical CRFs for object class image segmentation. In ICCV, 2009.
    • (2009) ICCV
    • Ladicky, L.1    Russell, C.2    Kohli, P.3    Torr, P.H.S.4
  • 15
    • 84986261676 scopus 로고    scopus 로고
    • Efficient piecewise training of deep structured models for semantic segmentation
    • G. Lin, C. Shen, A. van dan Hengel, and I. Reid. Efficient piecewise training of deep structured models for semantic segmentation. In CVPR, 2016.
    • (2016) CVPR
    • Lin, G.1    Shen, C.2    Hengel Dan A.Van3    Reid, I.4
  • 16
    • 84959243955 scopus 로고    scopus 로고
    • Multiclass semantic video segmentation with object-level active inference
    • B. Liu and X. He. Multiclass semantic video segmentation with object-level active inference. In CVPR, 2015.
    • (2015) CVPR
    • Liu, B.1    He, X.2
  • 17
    • 84925438468 scopus 로고    scopus 로고
    • Multi-class semantic video segmentation with exemplar-based object reasoning
    • B. Liu, X. He, and S. Gould. Multi-class semantic video segmentation with exemplar-based object reasoning. In WACV, 2015.
    • (2015) WACV
    • Liu, B.1    He, X.2    Gould, S.3
  • 18
    • 84959205572 scopus 로고    scopus 로고
    • Fully convolutional networks for semantic segmentation
    • J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic segmentation. In CVPR, 2015.
    • (2015) CVPR
    • Long, J.1    Shelhamer, E.2    Darrell, T.3
  • 19
    • 84986312352 scopus 로고    scopus 로고
    • Discrete optimization for optical flow
    • M. Menze, C. Heipke, and A. Geiger. Discrete optimization for optical flow. In GCPR, 2015.
    • (2015) GCPR
    • Menze, M.1    Heipke, C.2    Geiger, A.3
  • 20
    • 84887286748 scopus 로고    scopus 로고
    • Efficient temporal consistency for streaming video scene analysis
    • O. Miksik, D. Munoz, J. A. Bagnell, and M. Hebert. Efficient temporal consistency for streaming video scene analysis. In ICRA, 2013.
    • (2013) ICRA
    • Miksik, O.1    Munoz, D.2    Bagnell, J.A.3    Hebert, M.4
  • 21
    • 84898432561 scopus 로고    scopus 로고
    • Towards longer long-range motion trajectories
    • M. Rubinstein, C. Liu, and W. T. Freeman. Towards longer long-range motion trajectories. In BMVC, 2012.
    • (2012) BMVC
    • Rubinstein, M.1    Liu, C.2    Freeman, W.T.3
  • 23
    • 58149151266 scopus 로고    scopus 로고
    • TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context
    • J. Shotton, J. M. Winn, C. Rother, and A. Criminisi. TextonBoost for image understanding: Multi-class object recognition and segmentation by jointly modeling texture, layout, and context. IJCV, 81(1), 2009.
    • (2009) IJCV , vol.81 , Issue.1
    • Shotton, J.1    Winn, J.M.2    Rother, C.3    Criminisi, A.4
  • 24
    • 85083953063 scopus 로고    scopus 로고
    • Very deep convolutional networks for large-scale image recognition
    • K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. In ICLR, 2015.
    • (2015) ICLR
    • Simonyan, K.1    Zisserman, A.2
  • 25
    • 84898870663 scopus 로고    scopus 로고
    • Combining appearance and structure from motion features for road scene understanding
    • P. Sturgess, K. Alahari, L. Ladicky, and P. H. S. Torr. Combining appearance and structure from motion features for road scene understanding. In BMVC, 2009.
    • (2009) BMVC
    • Sturgess, P.1    Alahari, K.2    Ladicky, L.3    Torr, P.H.S.4
  • 26
    • 79952783476 scopus 로고    scopus 로고
    • Dense point trajectories by GPU-accelerated large displacement optical flow
    • N. Sundaram, T. Brox, and K. Keutzer. Dense point trajectories by GPU-accelerated large displacement optical flow. In ECCV, 2010.
    • (2010) ECCV
    • Sundaram, N.1    Brox, T.2    Keutzer, K.3
  • 27
    • 84873190838 scopus 로고    scopus 로고
    • Superparsing-scalable nonparametric image parsing with superpixels
    • J. Tighe and S. Lazebnik. Superparsing-scalable nonparametric image parsing with superpixels. IJCV, 101(2), 2013.
    • (2013) IJCV , vol.101 , Issue.2
    • Tighe, J.1    Lazebnik, S.2
  • 28
    • 84963812701 scopus 로고    scopus 로고
    • Semantic video segmentation: Exploring inference efficiency
    • S. Tripathi, S. Belongie, Y. Hwang, and T. Q. Nguyen. Semantic video segmentation: Exploring inference efficiency. In ISOCC, 2015.
    • (2015) ISOCC
    • Tripathi, S.1    Belongie, S.2    Hwang, Y.3    Nguyen, T.Q.4
  • 29
    • 0000005482 scopus 로고
    • Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems
    • H. A. van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 13(2), 1992.
    • (1992) SIAM Journal on Scientific and Statistical Computing , vol.13 , Issue.2
    • Van Der Vorst, H.A.1
  • 30
    • 85083952059 scopus 로고    scopus 로고
    • Multi-scale context aggregation by dilated convolutions
    • F. Yu and V. Koltun. Multi-scale context aggregation by dilated convolutions. In ICLR, 2016.
    • (2016) ICLR
    • Yu, F.1    Koltun, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.