메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 2403-2412

DeepID-Net: Deformable deep convolutional neural networks for object detection

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; CONVOLUTION; DEFORMATION; NEURAL NETWORKS; OBJECT RECOGNITION; PATTERN RECOGNITION; PIPELINES;

EID: 84948382785     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298854     Document Type: Conference Paper
Times cited : (412)

References (61)
  • 1
    • 85026933279 scopus 로고    scopus 로고
    • www. ee. cuhk. edu. hk/?wlouyang/projects/imagenetdeepid
  • 2
    • 77955987097 scopus 로고    scopus 로고
    • On detection of multiple object instances using hough transforms
    • O. Barinova, V. Lempitsky, and P. Kohli. On detection of multiple object instances using hough transforms. In CVPR, 2010
    • (2010) CVPR
    • Barinova, O.1    Lempitsky, V.2    Kohli, P.3
  • 3
    • 85112851150 scopus 로고    scopus 로고
    • Poselets: Body part detectors trained using 3D human pose annotations
    • L. Bourdev and J. Malik. Poselets: body part detectors trained using 3D human pose annotations. In ICCV, 2009
    • (2009) ICCV
    • Bourdev, L.1    Malik, J.2
  • 4
    • 85072028231 scopus 로고    scopus 로고
    • Return of the devil in the details: Delving deep into convolutional nets
    • K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return of the devil in the details: Delving deep into convolutional nets. In BMVC, 2014
    • (2014) BMVC
    • Chatfield, K.1    Simonyan, K.2    Vedaldi, A.3    Zisserman, A.4
  • 5
    • 33645146449 scopus 로고    scopus 로고
    • Histograms of oriented gradients for human detection
    • N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In CVPR, 2005
    • (2005) CVPR
    • Dalal, N.1    Triggs, B.2
  • 6
    • 84877748784 scopus 로고    scopus 로고
    • Detecting actions, poses, and objects with relational phraselets
    • C. Desai and D. Ramanan. Detecting actions, poses, and objects with relational phraselets. In ECCV, 2012
    • (2012) ECCV
    • Desai, C.1    Ramanan, D.2
  • 7
    • 77953180995 scopus 로고    scopus 로고
    • Discriminative models for multi-class object layout
    • C. Desai, D. Ramanan, and C. Fowlkes. Discriminative models for multi-class object layout. In ICCV, 2009
    • (2009) ICCV
    • Desai, C.1    Ramanan, D.2    Fowlkes, C.3
  • 8
    • 84866724839 scopus 로고    scopus 로고
    • Contextual boost for pedestrian detection
    • Y. Ding and J. Xiao. Contextual boost for pedestrian detection. In CVPR, 2012
    • (2012) CVPR
    • Ding, Y.1    Xiao, J.2
  • 10
    • 84919881041 scopus 로고    scopus 로고
    • Decaf: A deep convolutional activation feature for generic visual recognition
    • J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. In ICML, pages 647-655, 2014
    • (2014) ICML , pp. 647-655
    • Donahue, J.1    Jia, Y.2    Vinyals, O.3    Hoffman, J.4    Zhang, N.5    Tzeng, E.6    Darrell, T.7
  • 12
    • 4644354464 scopus 로고    scopus 로고
    • Pictorial structures for object recognition
    • P. F. Felzenszwalb and D. P. Huttenlocher. Pictorial structures for object recognition. IJCV, 61:55-79, 2005
    • (2005) IJCV , vol.61 , pp. 55-79
    • Felzenszwalb, P.F.1    Huttenlocher, D.P.2
  • 13
    • 77956001253 scopus 로고    scopus 로고
    • Multi-class object localization by combining local contextual interactions
    • IEEE
    • C. Galleguillos, B. McFee, S. Belongie, and G. Lanckriet. Multi-class object localization by combining local contextual interactions. In CVPR, pages 113-120. IEEE, 2010
    • (2010) CVPR , pp. 113-120
    • Galleguillos, C.1    McFee, B.2    Belongie, S.3    Lanckriet, G.4
  • 14
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 18
    • 84911392501 scopus 로고    scopus 로고
    • Detecting objects using deformation dictionaries
    • B. Hariharan, C. L. Zitnick, and P. Dollár. Detecting objects using deformation dictionaries. In CVPR, 2014
    • (2014) CVPR
    • Hariharan, B.1    Zitnick, C.L.2    Dollár, P.3
  • 19
    • 84928278589 scopus 로고    scopus 로고
    • Spatial pyramid pooling in deep convolutional networks for visual recognition
    • K. He, X. Zhang, S. Ren, and J. Sun. Spatial pyramid pooling in deep convolutional networks for visual recognition. In ECCV. 2014
    • (2014) ECCV
    • He, K.1    Zhang, X.2    Ren, S.3    Sun, J.4
  • 20
    • 56749104177 scopus 로고    scopus 로고
    • Learning spatial context: Using stuff to find things
    • G. Heitz and D. Koller. Learning spatial context: Using stuff to find things. In ECCV, pages 30-43. 2008
    • (2008) ECCV , pp. 30-43
    • Heitz, G.1    Koller, D.2
  • 21
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.3
  • 23
    • 84911449919 scopus 로고    scopus 로고
    • Switchable deep network for pedestrian detection
    • P. Luo, Y. Tian, X. Wang, and X. Tang. Switchable deep network for pedestrian detection. In CVPR, 2014
    • (2014) CVPR
    • Luo, P.1    Tian, Y.2    Wang, X.3    Tang, X.4
  • 24
    • 84866665255 scopus 로고    scopus 로고
    • Hierarchical face parsing via deep learning
    • P. Luo, X. Wang, and X. Tang. Hierarchical face parsing via deep learning. In CVPR, 2012
    • (2012) CVPR
    • Luo, P.1    Wang, X.2    Tang, X.3
  • 25
    • 84898796864 scopus 로고    scopus 로고
    • A deep sum-product architecture for robust facial attributes analysis
    • P. Luo, X. Wang, and X. Tang. A deep sum-product architecture for robust facial attributes analysis. In ICCV, 2013
    • (2013) ICCV
    • Luo, P.1    Wang, X.2    Tang, X.3
  • 26
    • 84898770979 scopus 로고    scopus 로고
    • Pedestrian parsing via deep decompositional neural network
    • P. Luo, X. Wang, and X. Tang. Pedestrian parsing via deep decompositional neural network. In ICCV, 2013
    • (2013) ICCV
    • Luo, P.1    Wang, X.2    Tang, X.3
  • 27
    • 84911409274 scopus 로고    scopus 로고
    • Multi-source deep learning for human pose estimation
    • IEEE
    • W. Ouyang, X. Chu, and X. Wang. Multi-source deep learning for human pose estimation. In CVPR, pages 2337-2344. IEEE, 2014
    • (2014) CVPR , pp. 2337-2344
    • Ouyang, W.1    Chu, X.2    Wang, X.3
  • 28
    • 84866696906 scopus 로고    scopus 로고
    • A discriminative deep model for pedestrian detection with occlusion handling
    • W. Ouyang and X. Wang. A discriminative deep model for pedestrian detection with occlusion handling. In CVPR, 2012
    • (2012) CVPR
    • Ouyang, W.1    Wang, X.2
  • 29
    • 84898788725 scopus 로고    scopus 로고
    • Joint deep learning for pedestrian detection
    • W. Ouyang and X. Wang. Joint deep learning for pedestrian detection. In ICCV, 2013
    • (2013) ICCV
    • Ouyang, W.1    Wang, X.2
  • 30
    • 84887380448 scopus 로고    scopus 로고
    • Modeling mutual visibility relationship in pedestrian detection
    • W. Ouyang, X. Zeng, and X. Wang. Modeling mutual visibility relationship in pedestrian detection. In CVPR, 2013
    • (2013) CVPR
    • Ouyang, W.1    Zeng, X.2    Wang, X.3
  • 31
    • 79960215740 scopus 로고    scopus 로고
    • Multiresolution models for object detection
    • D. Park, D. Ramanan, and C. Fowlkes. Multiresolution models for object detection. In ECCV, 2010
    • (2010) ECCV
    • Park, D.1    Ramanan, D.2    Fowlkes, C.3
  • 33
    • 84887351971 scopus 로고    scopus 로고
    • Histograms of sparse codes for object detection
    • IEEE
    • X. Ren and D. Ramanan. Histograms of sparse codes for object detection. In CVPR, pages 3246-3253. IEEE, 2013
    • (2013) CVPR , pp. 3246-3253
    • Ren, X.1    Ramanan, D.2
  • 35
    • 80052889458 scopus 로고    scopus 로고
    • Recognition using visual phrases
    • IEEE
    • M. A. Sadeghi and A. Farhadi. Recognition using visual phrases. In CVPR, pages 1745-1752. IEEE, 2011
    • (2011) CVPR , pp. 1745-1752
    • Sadeghi, M.A.1    Farhadi, A.2
  • 37
    • 85083953896 scopus 로고    scopus 로고
    • Deep inside convolutional networks: Visualising image classification models and saliency maps
    • K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside convolutional networks: Visualising image classification models and saliency maps. In ICLR, 2014
    • (2014) ICLR
    • Simonyan, K.1    Vedaldi, A.2    Zisserman, A.3
  • 39
    • 84959215617 scopus 로고    scopus 로고
    • Segmentation as selective search for object recognition
    • A. Smeulders, T. Gevers, N. Sebe, and C. Snoek. Segmentation as selective search for object recognition. In ICCV, 2011
    • (2011) ICCV
    • Smeulders, A.1    Gevers, T.2    Sebe, N.3    Snoek, C.4
  • 40
    • 80052891624 scopus 로고    scopus 로고
    • Contextualizing object detection and classification
    • Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan. Contextualizing object detection and classification. In CVPR, 2011
    • (2011) CVPR
    • Song, Z.1    Chen, Q.2    Huang, Z.3    Hua, Y.4    Yan, S.5
  • 41
    • 84887364811 scopus 로고    scopus 로고
    • Deep convolutional network cascade for facial point detection
    • Y. Sun, X. Wang, and X. Tang. Deep convolutional network cascade for facial point detection. In CVPR, 2013
    • (2013) CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 42
    • 84898787632 scopus 로고    scopus 로고
    • Hybrid deep learning for computing face similarities
    • Y. Sun, X. Wang, and X. Tang. Hybrid deep learning for computing face similarities. In ICCV, 2013
    • (2013) ICCV
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 43
    • 84911126535 scopus 로고    scopus 로고
    • Deep learning face representation from predicting 10,000 classes
    • Y. Sun, X. Wang, and X. Tang. Deep learning face representation from predicting 10,000 classes. In CVPR, 2014
    • (2014) CVPR
    • Sun, Y.1    Wang, X.2    Tang, X.3
  • 47
    • 84898769710 scopus 로고    scopus 로고
    • Regionlets for generic object detection
    • IEEE
    • X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, pages 17-24. IEEE, 2013
    • (2013) ICCV , pp. 17-24
    • Wang, X.1    Yang, M.2    Zhu, S.3    Lin, Y.4
  • 48
    • 34548102203 scopus 로고    scopus 로고
    • Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors
    • B. Wu and R. Nevatia. Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. IJCV, 75(2):247-266, 2007
    • (2007) IJCV , vol.75 , Issue.2 , pp. 247-266
    • Wu, B.1    Nevatia, R.2
  • 49
    • 84866696913 scopus 로고    scopus 로고
    • Multi-pedestrian detection in crowded scenes: A global view
    • J. Yan, Z. Lei, D. Yi, and S. Z. Li. Multi-pedestrian detection in crowded scenes: A global view. In CVPR, 2012
    • (2012) CVPR
    • Yan, J.1    Lei, Z.2    Yi, D.3    Li, S.Z.4
  • 51
    • 80052895150 scopus 로고    scopus 로고
    • Articulated pose estimation with flexible mixtures-of-parts
    • Y. Yang and D. Ramanan. Articulated pose estimation with flexible mixtures-of-parts. In CVPR, 2011
    • (2011) CVPR
    • Yang, Y.1    Ramanan, D.2
  • 52
    • 84887598018 scopus 로고    scopus 로고
    • Articulated human detection with flexible mixtures of parts
    • Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. IEEE Trans. PAMI, 35(12):2878-2890, 2013
    • (2013) IEEE Trans. PAMI , vol.35 , Issue.12 , pp. 2878-2890
    • Yang, Y.1    Ramanan, D.2
  • 53
    • 77955988492 scopus 로고    scopus 로고
    • Modeling mutual context of object and human pose in human-object interaction activities
    • B. Yao and L. Fei-Fei. Modeling mutual context of object and human pose in human-object interaction activities. In CVPR, 2010
    • (2010) CVPR
    • Yao, B.1    Fei-Fei, L.2
  • 55
    • 84906495301 scopus 로고    scopus 로고
    • Deep learning of scene-specific classifier for pedestrian detection
    • X. Zeng, W. Ouyang, M. Wang, and X. Wang. Deep learning of scene-specific classifier for pedestrian detection. In ECCV, pages 472-487. 2014
    • (2014) ECCV , pp. 472-487
    • Zeng, X.1    Ouyang, W.2    Wang, M.3    Wang, X.4
  • 56
    • 84898828144 scopus 로고    scopus 로고
    • Multi-stage contextual deep learning for pedestrian detection
    • X. Zeng, W. Ouyang, and X. Wang. Multi-stage contextual deep learning for pedestrian detection. In ICCV, 2013
    • (2013) ICCV
    • Zeng, X.1    Ouyang, W.2    Wang, X.3
  • 57
    • 84906514027 scopus 로고    scopus 로고
    • Partbased r-cnns for fine-grained category detection
    • N. Zhang, J. Donahue, R. Girshick, and T. Darrell. Partbased r-cnns for fine-grained category detection. In ECCV, pages 834-849. 2014
    • (2014) ECCV , pp. 834-849
    • Zhang, N.1    Donahue, J.2    Girshick, R.3    Darrell, T.4
  • 58
    • 84959212183 scopus 로고    scopus 로고
    • Saliency detection by multi-context deep learning
    • R. Zhao,W. Ouyang, H. Li, and X. Wang. Saliency detection by multi-context deep learning. In CVPR, 2015
    • (2015) CVPR
    • Zhao, R.1    Ouyang, W.2    Li, H.3    Wang, X.4
  • 59
    • 77955986466 scopus 로고    scopus 로고
    • Latent hierarchical structural learning for object detection
    • L. Zhu, Y. Chen, A. Yuille, and W. Freeman. Latent hierarchical structural learning for object detection. In CVPR, 2010
    • (2010) CVPR
    • Zhu, L.1    Chen, Y.2    Yuille, A.3    Freeman, W.4
  • 60
    • 84952018709 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2
  • 61
    • 85064926099 scopus 로고    scopus 로고
    • Generic object detection with dense neural patterns and regionlets
    • W. Y. Zou, X. Wang, M. Sun, and Y. Lin. Generic object detection with dense neural patterns and regionlets. BMVC, 2014.
    • (2014) BMVC
    • Zou, W.Y.1    Wang, X.2    Sun, M.3    Lin, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.