-
1
-
-
77956002528
-
Poselets: Body part detectors trained using 3d human pose annotations
-
1
-
L. Bourdev and J. Malik. Poselets: Body part detectors trained using 3d human pose annotations. In Proc. CVPR, 2009. 1
-
(2009)
Proc. CVPR
-
-
Bourdev, L.1
Malik, J.2
-
2
-
-
80052651120
-
Upper body detection and tracking in extended signing sequences
-
1, 5, 7
-
P. Buehler, M. Everingham, D. P. Huttenlocher, and A. Zisserman. Upper body detection and tracking in extended signing sequences. IJCV, 2011. 1, 5, 7
-
(2011)
IJCV
-
-
Buehler, P.1
Everingham, M.2
Huttenlocher, D.P.3
Zisserman, A.4
-
3
-
-
84907590378
-
Automatic and efficient human pose estimation for sign language videos
-
1, 5, 7
-
J. Charles, T. Pfister, M. Everingham, and A. Zisserman. Automatic and efficient human pose estimation for sign language videos. IJCV, 2013. 1, 5, 7
-
(2013)
IJCV
-
-
Charles, J.1
Pfister, T.2
Everingham, M.3
Zisserman, A.4
-
4
-
-
85088061881
-
Upper body pose estimation with temporal sequential forests
-
1, 2, 4, 7
-
J. Charles, T. Pfister, D. Magee, D. Hogg, and A. Zisserman. Upper body pose estimation with temporal sequential forests. Proc. BMVC, 2014. 1, 2, 4, 7
-
(2014)
Proc. BMVC
-
-
Charles, J.1
Pfister, T.2
Magee, D.3
Hogg, D.4
Zisserman, A.5
-
5
-
-
85044083010
-
Articulated pose estimation with image-dependent preference on pairwise relations
-
1, 8
-
X. Chen and A. Yuille. Articulated pose estimation with image-dependent preference on pairwise relations. In Proc. NIPS, 2014. 1, 8
-
(2014)
Proc. NIPS
-
-
Chen, X.1
Yuille, A.2
-
6
-
-
84911446929
-
Mixing body-part sequences for human pose estimation
-
5, 7
-
A. Cherian, J. Mairal, K. Alahari, and C. Schmid. Mixing body-part sequences for human pose estimation. In Proc. CVPR, 2014. 5, 7
-
(2014)
Proc. CVPR
-
-
Cherian, A.1
Mairal, J.2
Alahari, K.3
Schmid, C.4
-
7
-
-
84919881041
-
Decaf: A deep convolutional activation feature for generic visual recognition
-
1
-
J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell. Decaf: A deep convolutional activation feature for generic visual recognition. Proc. ICML, 2014. 1
-
(2014)
Proc. ICML
-
-
Donahue, J.1
Jia, Y.2
Vinyals, O.3
Hoffman, J.4
Zhang, N.5
Tzeng, E.6
Darrell, T.7
-
8
-
-
84863625140
-
2d articulated human pose estimation and retrieval in (almost) unconstrained still images
-
1
-
M. Eichner, M. Marin-Jimenez, A. Zisserman, and V. Ferrari. 2d articulated human pose estimation and retrieval in (almost) unconstrained still images. IJCV, 2012. 1
-
(2012)
IJCV
-
-
Eichner, M.1
Marin-Jimenez, M.2
Zisserman, A.3
Ferrari, V.4
-
9
-
-
84892583619
-
Multi-modal gesture recognition challenge 2013: Dataset and results
-
5
-
S. Escalera, J. Gonzalez, X. Baro, M. Reyes, O. Lopes, I. Guyon, V. Athistos, and H. Escalante. Multi-modal gesture recognition challenge 2013: Dataset and results. In Proc. ICMI, 2013. 5
-
(2013)
Proc. ICMI
-
-
Escalera, S.1
Gonzalez, J.2
Baro, X.3
Reyes, M.4
Lopes, O.5
Guyon, I.6
Athistos, V.7
Escalante, H.8
-
10
-
-
4644354464
-
Pictorial structures for object recognition
-
1
-
P. Felzenszwalb and D. Huttenlocher. Pictorial structures for object recognition. IJCV, 2005. 1
-
(2005)
IJCV
-
-
Felzenszwalb, P.1
Huttenlocher, D.2
-
11
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
1
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In Proc. CVPR, 2014. 1
-
(2014)
Proc. CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
12
-
-
84856653054
-
Efficient regression of general-activity human poses from depth images
-
1
-
R. Girshick, J. Shotton, P. Kohli, A. Criminisi, and A. Fitzgibbon. Efficient regression of general-activity human poses from depth images. In Proc. ICCV, 2011. 1
-
(2011)
Proc. ICCV
-
-
Girshick, R.1
Shotton, J.2
Kohli, P.3
Criminisi, A.4
Fitzgibbon, A.5
-
13
-
-
84911427286
-
Using k-poselets for detecting people and localizing their keypoints
-
1
-
G. Gkioxari, B. Hariharan, R. Girshick, and J. Malik. Using k-poselets for detecting people and localizing their keypoints. In Proc. CVPR, 2014. 1
-
(2014)
Proc. CVPR
-
-
Gkioxari, G.1
Hariharan, B.2
Girshick, R.3
Malik, J.4
-
14
-
-
84893710272
-
Maxout networks
-
6
-
I. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio. Maxout networks. J. Machine Learning Research, 2013. 6
-
(2013)
J. Machine Learning Research
-
-
Goodfellow, I.1
Warde-Farley, D.2
Mirza, M.3
Courville, A.4
Bengio, Y.5
-
15
-
-
85083953281
-
Multi-digit number recognition from street view imagery using deep convolutional neural networks
-
1
-
I. J. Goodfellow, Y. Bulatov, J. Ibarz, S. Arnoud, and V. Shet. Multi-digit number recognition from street view imagery using deep convolutional neural networks. In Proc. ICLR, 2014. 1
-
(2014)
Proc. ICLR
-
-
Goodfellow, I.J.1
Bulatov, Y.2
Ibarz, J.3
Arnoud, S.4
Shet, V.5
-
17
-
-
85083953149
-
Learning human pose estimation features with convolutional networks
-
1, 8
-
A. Jain, J. Tompson, M. Andriluka, G. Taylor, and C. Bregler. Learning human pose estimation features with convolutional networks. Proc. ICLR, 2014. 1, 8
-
(2014)
Proc. ICLR
-
-
Jain, A.1
Tompson, J.2
Andriluka, M.3
Taylor, G.4
Bregler, C.5
-
18
-
-
84977621671
-
MoDeep: A deep learning framework using motion features for human pose estimation
-
2, 8
-
A. Jain, J. Tompson, Y. LeCun, and C. Bregler. MoDeep: A deep learning framework using motion features for human pose estimation. Proc. ACCV, 2014. 2, 8
-
(2014)
Proc. ACCV
-
-
Jain, A.1
Tompson, J.2
LeCun, Y.3
Bregler, C.4
-
20
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
1
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei. Large-scale video classification with convolutional neural networks. In Proc. CVPR, 2014. 1
-
(2014)
Proc. CVPR
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
21
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
1, 3
-
A. Krizhevsky, I. Sutskever, and G. Hinton. Imagenet classification with deep convolutional neural networks. In Proc. NIPS, 2012. 1, 3
-
(2012)
Proc. NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.3
-
22
-
-
34249661090
-
Synergistic face detection and pose estimation with energy-based models
-
1
-
M. Osadchy, Y. LeCun, and M. Miller. Synergistic face detection and pose estimation with energy-based models. JMLR, 2007. 1
-
(2007)
JMLR
-
-
Osadchy, M.1
LeCun, Y.2
Miller, M.3
-
24
-
-
84989343117
-
Deep convolutional neural networks for efficient pose estimation in gesture videos
-
1, 2, 5, 6, 7, 8
-
T. Pfister, K. Simonyan, J. Charles, and A. Zisserman. Deep convolutional neural networks for efficient pose estimation in gesture videos. Proc. ACCV, 2014. 1, 2, 5, 6, 7, 8
-
(2014)
Proc. ACCV
-
-
Pfister, T.1
Simonyan, K.2
Charles, J.3
Zisserman, A.4
-
26
-
-
84887370243
-
Modec: Multimodal decomposable models for human pose estimation
-
5
-
B. Sapp and B. Taskar. Modec: Multimodal decomposable models for human pose estimation. In Proc. CVPR, 2013. 5
-
(2013)
Proc. CVPR
-
-
Sapp, B.1
Taskar, B.2
-
27
-
-
80052890828
-
Parsing human motion with stretchable models
-
1
-
B. Sapp, D. Weiss, and B. Taskar. Parsing human motion with stretchable models. In Proc. CVPR, 2011. 1
-
(2011)
Proc. CVPR
-
-
Sapp, B.1
Weiss, D.2
Taskar, B.3
-
28
-
-
85083951635
-
Overfeat: Integrated recognition, localization and detection using convolutional networks
-
1, 6
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun. Overfeat: Integrated recognition, localization and detection using convolutional networks. Proc. ICLR, 2014. 1, 6
-
(2014)
Proc. ICLR
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
29
-
-
84887383692
-
Efficient human pose estimation from single depth images
-
1
-
J. Shotton, R. Girshick, A. Fitzgibbon, T. Sharp, M. Cook, M. Finocchio, R. Moore, P. Kohli, A. Criminisi, A. Kipman, and A. Blake. Efficient human pose estimation from single depth images. PAMI, 2013. 1
-
(2013)
PAMI
-
-
Shotton, J.1
Girshick, R.2
Fitzgibbon, A.3
Sharp, T.4
Cook, M.5
Finocchio, M.6
Moore, R.7
Kohli, P.8
Criminisi, A.9
Kipman, A.10
Blake, A.11
-
30
-
-
84937862424
-
Two-stream convolutional networks for action recognition in videos
-
1, 2
-
K. Simonyan and A. Zisserman. Two-stream convolutional networks for action recognition in videos. Proc. NIPS, 2014. 1, 2
-
(2014)
Proc. NIPS
-
-
Simonyan, K.1
Zisserman, A.2
-
31
-
-
84866654638
-
Conditional regression forests for human pose estimation
-
1
-
M. Sun, P. Kohli, and J. Shotton. Conditional regression forests for human pose estimation. In Proc. CVPR, 2012. 1
-
(2012)
Proc. CVPR
-
-
Sun, M.1
Kohli, P.2
Shotton, J.3
-
32
-
-
84911198048
-
Deepface: Closing the gap to human-level performance in face verification
-
1
-
Y. Taigman, M. Yang, M. Ranzato, and L. Wolf. Deepface: Closing the gap to human-level performance in face verification. In Proc. CVPR, 2014. 1
-
(2014)
Proc. CVPR
-
-
Taigman, Y.1
Yang, M.2
Ranzato, M.3
Wolf, L.4
-
33
-
-
85162010297
-
Pose-sensitive embedding by nonlinear nca regression
-
1
-
G. Taylor, R. Fergus, G. Williams, I. Spiro, and C. Bregler. Pose-sensitive embedding by nonlinear nca regression. In Proc. NIPS, 2010. 1
-
(2010)
Proc. NIPS
-
-
Taylor, G.1
Fergus, R.2
Williams, G.3
Spiro, I.4
Bregler, C.5
-
34
-
-
84866688051
-
The vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation
-
1
-
J. Taylor, J. Shotton, T. Sharp, and A. Fitzgibbon. The vitruvian manifold: Inferring dense correspondences for one-shot human pose estimation. In Proc. CVPR, 2012. 1
-
(2012)
Proc. CVPR
-
-
Taylor, J.1
Shotton, J.2
Sharp, T.3
Fitzgibbon, A.4
-
35
-
-
84959240338
-
Efficient object localization using convolutional networks
-
1, 3, 8
-
J. Tompson, R. Goroshin, A. Jain, Y. LeCun, and C. Bregler. Efficient object localization using convolutional networks. Proc. CVPR, 2015. 1, 3, 8
-
(2015)
Proc. CVPR
-
-
Tompson, J.1
Goroshin, R.2
Jain, A.3
LeCun, Y.4
Bregler, C.5
-
36
-
-
84930634156
-
Joint training of a convolutional network and a graphical model for human pose estimation
-
1, 3, 8
-
J. Tompson, A. Jain, Y. LeCun, and C. Bregler. Joint training of a convolutional network and a graphical model for human pose estimation. Proc. NIPS, 2014. 1, 3, 8
-
(2014)
Proc. NIPS
-
-
Tompson, J.1
Jain, A.2
LeCun, Y.3
Bregler, C.4
-
37
-
-
84911381180
-
DeepPose: Human pose estimation via deep neural networks
-
1, 2
-
A. Toshev and C. Szegedy. DeepPose: Human pose estimation via deep neural networks. CVPR, 2014. 1, 2
-
(2014)
CVPR
-
-
Toshev, A.1
Szegedy, C.2
-
38
-
-
84898830536
-
Deepflow: Large displacement optical flow with deep matching
-
4, 5
-
P. Weinzaepfel, J. Revaud, Z. Harchaoui, and C. Schmid. Deepflow: Large displacement optical flow with deep matching. In Proc. ICCV, 2013. 4, 5
-
(2013)
Proc. ICCV
-
-
Weinzaepfel, P.1
Revaud, J.2
Harchaoui, Z.3
Schmid, C.4
-
39
-
-
84887598018
-
Articulated human detection with flexible mixtures of parts
-
1, 7
-
Y. Yang and D. Ramanan. Articulated human detection with flexible mixtures of parts. PAMI, 2013. 1, 7
-
(2013)
PAMI
-
-
Yang, Y.1
Ramanan, D.2
-
40
-
-
84921476116
-
Visualizing and understanding convolutional networks
-
1
-
M. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. Proc. ECCV, 2014. 1
-
(2014)
Proc. ECCV
-
-
Zeiler, M.1
Fergus, R.2
|