메뉴 건너뛰기




Volumn 10, Issue 2, 2014, Pages

Learning Gene Networks under SNP Perturbations Using eQTL Datasets

Author keywords

[No Author keywords available]

Indexed keywords

DECODING; GENE EXPRESSION; GRAPHIC METHODS; LEARNING ALGORITHMS; PERTURBATION TECHNIQUES; YEAST;

EID: 84901313606     PISSN: 1553734X     EISSN: 15537358     Source Type: Journal    
DOI: 10.1371/journal.pcbi.1003420     Document Type: Article
Times cited : (43)

References (48)
  • 1
    • 0035861532 scopus 로고    scopus 로고
    • Systematic genetic analysis with ordered arrays of yeast deletion mutants
    • Tong A, Evangelista M, Parsons A, Xu H, Bader G, et al. (2001) Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294: 2364–2368.
    • (2001) Science , vol.294 , pp. 2364-2368
    • Tong, A.1    Evangelista, M.2    Parsons, A.3    Xu, H.4    Bader, G.5
  • 2
    • 34247629588 scopus 로고    scopus 로고
    • Genetic reconstruction of a functional transcriptional regulatory network
    • Hu Z, Killion P, Iyer V, (2007) Genetic reconstruction of a functional transcriptional regulatory network. Nature Genetics 39: 683–687.
    • (2007) Nature Genetics , vol.39 , pp. 683-687
    • Hu, Z.1    Killion, P.2    Iyer, V.3
  • 3
    • 33747078457 scopus 로고    scopus 로고
    • Identifying transcription factor functions and targets by phenotypic activation
    • Chua G, Morris Q, Sopko R, Robinson M, Ryan O, et al. (2006) Identifying transcription factor functions and targets by phenotypic activation. PNAS 103: 12045–50.
    • (2006) PNAS , vol.103 , pp. 12045-12050
    • Chua, G.1    Morris, Q.2    Sopko, R.3    Robinson, M.4    Ryan, O.5
  • 4
    • 0035400051 scopus 로고    scopus 로고
    • Genetical genomics: the added value from segregation
    • Jansen RC, Nap JP, (2001) Genetical genomics: the added value from segregation. Trends in Genetics 17: 388–391.
    • (2001) Trends in Genetics , vol.17 , pp. 388-391
    • Jansen, R.C.1    Nap, J.P.2
  • 5
    • 0037306536 scopus 로고    scopus 로고
    • Studying complex biological systems using multifactorial perturbation
    • Jansen R, (2003) Studying complex biological systems using multifactorial perturbation. Nature Reviews Genetics 4: 145–151.
    • (2003) Nature Reviews Genetics , vol.4 , pp. 145-151
    • Jansen, R.1
  • 6
    • 4043128071 scopus 로고    scopus 로고
    • Genetic analysis of genome-wide variation in human gene expression
    • Morley M, Molony C, Weber T, Devlin J, Ewens K, et al. (2004) Genetic analysis of genome-wide variation in human gene expression. Nature 430: 743–747.
    • (2004) Nature , vol.430 , pp. 743-747
    • Morley, M.1    Molony, C.2    Weber, T.3    Devlin, J.4    Ewens, K.5
  • 8
    • 70149098541 scopus 로고    scopus 로고
    • Statistical estimation of correlated genome associations to a quantitative trait network
    • Kim S, Xing E, (2009) Statistical estimation of correlated genome associations to a quantitative trait network. PLoS Genetics 5: e1000587.
    • (2009) PLoS Genetics , vol.5 , pp. e1000587
    • Kim, S.1    Xing, E.2
  • 9
    • 78651228162 scopus 로고    scopus 로고
    • Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations
    • Logsdon B, Mezey J, (2010) Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations. PLoS Computational Biology 6: e1001014.
    • (2010) PLoS Computational Biology , vol.6 , pp. e1001014
    • Logsdon, B.1    Mezey, J.2
  • 10
    • 78651231688 scopus 로고    scopus 로고
    • Causal graphical models in systems genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes
    • Chaibub N, Keller M, Attie A, Yandell B, (2010) Causal graphical models in systems genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Annals of Applied Statistics 4: 320–339.
    • (2010) Annals of Applied Statistics , vol.4 , pp. 320-339
    • Chaibub, N.1    Keller, M.2    Attie, A.3    Yandell, B.4
  • 11
    • 44149084690 scopus 로고    scopus 로고
    • Using genetic markers to orient the edges in quantitative trait networks: the NEO software
    • Aten J, Fuller T, Lusis A, Horvath S, (2008) Using genetic markers to orient the edges in quantitative trait networks: the NEO software. BMC Systems Biology 2: 320–339.
    • (2008) BMC Systems Biology , vol.2 , pp. 320-339
    • Aten, J.1    Fuller, T.2    Lusis, A.3    Horvath, S.4
  • 12
    • 63549103905 scopus 로고    scopus 로고
    • Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast
    • Ye C, Galbraith S, Liao J, Eskin E, (2008) Using network component analysis to dissect regulatory networks mediated by transcription factors in yeast. PLoS Computational Biology 5: e1000311.
    • (2008) PLoS Computational Biology , vol.5 , pp. e1000311
    • Ye, C.1    Galbraith, S.2    Liao, J.3    Eskin, E.4
  • 13
  • 14
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • Meinshausen N, Buhlmann P, (2006) High-dimensional graphs and variable selection with the lasso. The Annals of Statistics 34: 1436–1462.
    • (2006) The Annals of Statistics , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 15
    • 27844521293 scopus 로고    scopus 로고
    • A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics
    • Schafer J, Strimmer K, (2005) A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications of Genetics and Molecular Biology 4: 32.
    • (2005) Statistical Applications of Genetics and Molecular Biology , vol.4 , pp. 32
    • Schafer, J.1    Strimmer, K.2
  • 16
    • 45849134070 scopus 로고    scopus 로고
    • Sparse inverse covariance estimation with the graphical lasso
    • Friedman J, Hastie T, Tibshirani R, (2008) Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9: 432–41.
    • (2008) Biostatistics , vol.9 , pp. 432-441
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 17
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data
    • Banerjee O, Ghaoui LE, dAspremont A, (2008) Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research 9: 485–516.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    Ghaoui, L.E.2    dAspremont, A.3
  • 18
    • 84956541963 scopus 로고    scopus 로고
    • Shi W, Lee K,Wahba G (2007) Detecting disease causing genes by LASSO-Patternsearch algorithm. Technical Report 1140, Department of Statistics, University of Wisconsin.
    • Shi, W.1
  • 19
    • 62549115747 scopus 로고    scopus 로고
    • Genome-wide association analysis by lasso penalized logistic regression
    • Wu TT, Chen YF, Hastie T, Sobel E, Lange K, (2009) Genome-wide association analysis by lasso penalized logistic regression. Bioinformatics 25: 714–721.
    • (2009) Bioinformatics , vol.25 , pp. 714-721
    • Wu, T.T.1    Chen, Y.F.2    Hastie, T.3    Sobel, E.4    Lange, K.5
  • 20
    • 77956331627 scopus 로고    scopus 로고
    • Integrating common and rare genetic variation in diverse human populations
    • The International HapMap 3 Consortium (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467: 52–58.
    • (2010) Nature , vol.467 , pp. 52-58
  • 21
    • 13444306165 scopus 로고    scopus 로고
    • The landscape of genetic complexity across 5,700 gene expression traits in yeast
    • Brem R, Kruglyak L, (2005) The landscape of genetic complexity across 5,700 gene expression traits in yeast. PNAS 102: 1572–1577.
    • (2005) PNAS , vol.102 , pp. 1572-1577
    • Brem, R.1    Kruglyak, L.2
  • 23
    • 84860352230 scopus 로고    scopus 로고
    • A sparse conditional Gaussian graphical model for analysis of genetical genomics data
    • Yin J, Li H, (2011) A sparse conditional Gaussian graphical model for analysis of genetical genomics data. Annals of Applied Statistics 5: 2630–50.
    • (2011) Annals of Applied Statistics , vol.5 , pp. 2630-2650
    • Yin, J.1    Li, H.2
  • 24
    • 41549101939 scopus 로고    scopus 로고
    • Model selection through sparse maximum likeli- hood estimation for multivariate Gaussian or binary data
    • Banerjee O, El Ghaoui L, d'Aspremont A, (2008) Model selection through sparse maximum likeli- hood estimation for multivariate Gaussian or binary data. Journal of Machine Learning Research 9: 485–516.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 485-516
    • Banerjee, O.1    El Ghaoui, L.2    d'Aspremont, A.3
  • 27
    • 84862854053 scopus 로고    scopus 로고
    • Sparse estimation of conditional graphical models with application to gene networks
    • Li B, Chun H, Zhao H, (2012) Sparse estimation of conditional graphical models with application to gene networks. Journal of the American Statistical Association 107: 152–167.
    • (2012) Journal of the American Statistical Association , vol.107 , pp. 152-167
    • Li, B.1    Chun, H.2    Zhao, H.3
  • 28
    • 0003607151 scopus 로고
    • Multivariate Analysis
    • Mardia K, Kent J, Bibby J (1979) Multivariate Analysis. Academic Press.
    • (1979)
    • Mardia, K.1    Kent, J.2    Bibby, J.3
  • 29
    • 70649111792 scopus 로고    scopus 로고
    • Probabilistic Graphical Models: Principles and Techniques
    • Koller D, Friedman N (2009) Probabilistic Graphical Models: Principles and Techniques. MIT Press.
    • (2009)
    • Koller, D.1    Friedman, N.2
  • 30
    • 0004055894 scopus 로고    scopus 로고
    • Convex Optimization
    • Boyd S, Vandenberghe L (2004) Convex Optimization. Cambridge University Press.
    • (2004)
    • Boyd, S.1    Vandenberghe, L.2
  • 31
    • 17444406259 scopus 로고    scopus 로고
    • Smooth minimization of non-smooth functions
    • Nesterov Y, (2005) Smooth minimization of non-smooth functions. Math Program 103: 127–152.
    • (2005) Math Program , vol.103 , pp. 127-152
    • Nesterov, Y.1
  • 32
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck A, Teboulle M, (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal of Imaging Sciences 2: 183–202.
    • (2009) SIAM Journal of Imaging Sciences , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2
  • 33
    • 67651063011 scopus 로고    scopus 로고
    • Gradient methods for minimizing composite objective function
    • Nesterov Y (2007) Gradient methods for minimizing composite objective function. CORE Dis- cussion Papers 2007076, Universit catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    • (2007)
    • Nesterov, Y.1
  • 34
    • 84866248858 scopus 로고    scopus 로고
    • Smoothing proximal gradient method for general structured sparse regression
    • Chen X, Lin Q, Kim S, Carbonell J, Xing E, (2012) Smoothing proximal gradient method for general structured sparse regression. Annals of Applied Statistics 6: 719–752.
    • (2012) Annals of Applied Statistics , vol.6 , pp. 719-752
    • Chen, X.1    Lin, Q.2    Kim, S.3    Carbonell, J.4    Xing, E.5
  • 35
    • 34548583274 scopus 로고    scopus 로고
    • A tutorial on spectral clustering
    • Luxburg U, (2007) A tutorial on spectral clustering. Statistics and Computing 17: 395–416.
    • (2007) Statistics and Computing , vol.17 , pp. 395-416
    • Luxburg, U.1
  • 38
    • 45149106353 scopus 로고    scopus 로고
    • Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks
    • Zhu J, Zhang B, Smith E, Drees B, Brem R, et al. (2008) Integrating large-scale functional genomic data to dissect the complexity of yeast regulatory networks. Nature Genetics 40: 854–61.
    • (2008) Nature Genetics , vol.40 , pp. 854-861
    • Zhu, J.1    Zhang, B.2    Smith, E.3    Drees, B.4    Brem, R.5
  • 39
    • 0026038613 scopus 로고
    • TFS1: A suppressor of cdc25 mutations in Saccharomyces cerevisiae
    • Robinson L, Tatchell K, (1991) TFS1: A suppressor of cdc25 mutations in Saccharomyces cerevisiae. Molecular and General Genetics 230: 241–250.
    • (1991) Molecular and General Genetics , vol.230 , pp. 241-250
    • Robinson, L.1    Tatchell, K.2
  • 40
    • 84865715286 scopus 로고    scopus 로고
    • Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress
    • Tkach JM, Yimit A, Lee AY, Riffle M, Costanzo M, et al. (2012) Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nature Cell Biology 14: 966–976.
    • (2012) Nature Cell Biology , vol.14 , pp. 966-976
    • Tkach, J.M.1    Yimit, A.2    Lee, A.Y.3    Riffle, M.4    Costanzo, M.5
  • 42
    • 0030003064 scopus 로고    scopus 로고
    • Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae
    • Schmitt AP, McEntee K, (1996) Msn2p, a zinc finger DNA-binding protein, is the transcriptional activator of the multistress response in Saccharomyces cerevisiae. PNAS 93: 5777–82.
    • (1996) PNAS , vol.93 , pp. 5777-5782
    • Schmitt, A.P.1    McEntee, K.2
  • 43
    • 0032583570 scopus 로고    scopus 로고
    • Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae
    • Grant CM, Perrone G, Dawes IW, (1998) Glutathione and catalase provide overlapping defenses for protection against hydrogen peroxide in the yeast Saccharomyces cerevisiae. Biochemical and Biophysical Research Communications 253: 893–898.
    • (1998) Biochemical and Biophysical Research Communications , vol.253 , pp. 893-898
    • Grant, C.M.1    Perrone, G.2    Dawes, I.W.3
  • 44
    • 0035808386 scopus 로고    scopus 로고
    • Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae
    • Coleman S, Fang T, Rovinsky S, Turano F, Moye-Rowley W, (2000) Expression of a glutamate decarboxylase homologue is required for normal oxidative stress tolerance in Saccharomyces cerevisiae. Journal of Biological Chemistry 276: 244–250.
    • (2000) Journal of Biological Chemistry , vol.276 , pp. 244-250
    • Coleman, S.1    Fang, T.2    Rovinsky, S.3    Turano, F.4    Moye-Rowley, W.5
  • 45
    • 0032502257 scopus 로고    scopus 로고
    • A high-affinity inhibitor of yeast carboxypeptidase Y is encoded by TFS1 and shows homology to a family of lipid binding proteins
    • Bruun AW, Svendsen I, Sorensen SO, Kielland-Brandt MC, Winther JR, (1998) A high-affinity inhibitor of yeast carboxypeptidase Y is encoded by TFS1 and shows homology to a family of lipid binding proteins. Biochemistry 37: 3351–3357.
    • (1998) Biochemistry , vol.37 , pp. 3351-3357
    • Bruun, A.W.1    Svendsen, I.2    Sorensen, S.O.3    Kielland-Brandt, M.C.4    Winther, J.R.5
  • 47
    • 84859959092 scopus 로고    scopus 로고
    • Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation
    • Zhu J, Sova P, Xu Q, Dombek KM, Xu EY, et al. (2012) Stitching together multiple data dimensions reveals interacting metabolomic and transcriptomic networks that modulate cell regulation. PLoS Biology 10: e1001301.
    • (2012) PLoS Biology , vol.10 , pp. e1001301
    • Zhu, J.1    Sova, P.2    Xu, Q.3    Dombek, K.M.4    Xu, E.Y.5
  • 48
    • 0035064786 scopus 로고    scopus 로고
    • Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner
    • Amoros M, Estruch F, (2001) Hsf1p and Msn2/4p cooperate in the expression of Saccharomyces cerevisiae genes HSP26 and HSP104 in a gene- and stress type-dependent manner. Molecular Microbiology 39: 1523–1532.
    • (2001) Molecular Microbiology , vol.39 , pp. 1523-1532
    • Amoros, M.1    Estruch, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.