메뉴 건너뛰기




Volumn 17, Issue 1, 2016, Pages

DeepQA: Improving the estimation of single protein model quality with deep belief networks

Author keywords

Deep belief network; Machine learning; Protein model quality assessment; Protein structure prediction

Indexed keywords

BAYESIAN NETWORKS; COMPUTER OPERATING SYSTEMS; FORECASTING; LEARNING SYSTEMS; PROTEINS;

EID: 85000843987     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/s12859-016-1405-y     Document Type: Article
Times cited : (152)

References (58)
  • 1
    • 12844260161 scopus 로고    scopus 로고
    • Comparative protein structure modeling and its applications to drug discovery
    • Jacobson M, Sali A. Comparative protein structure modeling and its applications to drug discovery. Annu Rep Med Chem. 2004;39(85):259-74.
    • (2004) Annu Rep Med Chem , vol.39 , Issue.85 , pp. 259-274
    • Jacobson, M.1    Sali, A.2
  • 2
    • 84945117520 scopus 로고    scopus 로고
    • A large-scale conformation sampling and evaluation server for protein tertiary structure prediction and its assessment in CASP11
    • Li J, Cao R, Cheng J. A large-scale conformation sampling and evaluation server for protein tertiary structure prediction and its assessment in CASP11. BMC Bioinf. 2015;16(1):337.
    • (2015) BMC Bioinf , vol.16 , Issue.1 , pp. 337
    • Li, J.1    Cao, R.2    Cheng, J.3
  • 3
    • 84953341336 scopus 로고    scopus 로고
    • Integrated protein function prediction by mining function associations, sequences, and protein-protein and gene-gene interaction networks
    • Cao R, Cheng J. Integrated protein function prediction by mining function associations, sequences, and protein-protein and gene-gene interaction networks. Methods. 2016;93:84-91.
    • (2016) Methods , vol.93 , pp. 84-91
    • Cao, R.1    Cheng, J.2
  • 4
    • 84931048213 scopus 로고    scopus 로고
    • Large-scale model quality assessment for improving protein tertiary structure prediction
    • Cao R, Bhattacharya D, Adhikari B, Li J, Cheng J. Large-scale model quality assessment for improving protein tertiary structure prediction. Bioinformatics. 2015;31(12):i116-23.
    • (2015) Bioinformatics , vol.31 , Issue.12 , pp. 1116-1123
    • Cao, R.1    Bhattacharya, D.2    Adhikari, B.3    Li, J.4    Cheng, J.5
  • 8
    • 0031585984 scopus 로고    scopus 로고
    • Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions
    • Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997;268(1):209-25.
    • (1997) J Mol Biol , vol.268 , Issue.1 , pp. 209-225
    • Simons, K.T.1    Kooperberg, C.2    Huang, E.3    Baker, D.4
  • 9
    • 0030203863 scopus 로고    scopus 로고
    • TreeView: an application to display phylogenetic trees on personal computer
    • Page R. TreeView: an application to display phylogenetic trees on personal computer. Comp Appl Biol Sci. 1996;12:357-8.
    • (1996) Comp Appl Biol Sci , vol.12 , pp. 357-358
    • Page, R.1
  • 10
    • 84962302439 scopus 로고    scopus 로고
    • FALCONat home: a high-throughput protein structure prediction server based on remote homologue recognition
    • Wang C, Zhang H, Zheng W-M, Xu D, Zhu J, Wang B, Ning K, Sun S, Li SC, Bu D. FALCON at home: a high-throughput protein structure prediction server based on remote homologue recognition. Bioinformatics. 2016;32(3):462-4.
    • (2016) Bioinformatics , vol.32 , Issue.3 , pp. 462-464
    • Wang, C.1    Zhang, H.2    Zheng, W.-M.3    Xu, D.4    Zhu, J.5    Wang, B.6    Ning, K.7    Sun, S.8    Li, S.C.9    Bu, D.10
  • 11
    • 55549086519 scopus 로고    scopus 로고
    • Fragment HMM: A new approach to protein structure prediction
    • Li SC, Bu D, Xu J, Li M. Fragment HMM: A new approach to protein structure prediction. Protein Sci. 2008;17(11):1925-34.
    • (2008) Protein Sci , vol.17 , Issue.11 , pp. 1925-1934
    • Li, S.C.1    Bu, D.2    Xu, J.3    Li, M.4
  • 12
    • 39449115394 scopus 로고    scopus 로고
    • I-TASSER server for protein 3D structure prediction
    • Zhang Y. I-TASSER server for protein 3D structure prediction. BMC Bioinf. 2008;9(1):40.
    • (2008) BMC Bioinf , vol.9 , Issue.1 , pp. 40
    • Zhang, Y.1
  • 13
    • 77951234057 scopus 로고    scopus 로고
    • MUFOLD: a new solution for protein 3D structure prediction
    • Zhang J, Wang Q, Barz B, He Z, Kosztin I, Shang Y, Xu D. MUFOLD: a new solution for protein 3D structure prediction. Proteins. 2010;78(5):1137-52.
    • (2010) Proteins , vol.78 , Issue.5 , pp. 1137-1152
    • Zhang, J.1    Wang, Q.2    Barz, B.3    He, Z.4    Kosztin, I.5    Shang, Y.6    Xu, D.7
  • 14
    • 80855147852 scopus 로고    scopus 로고
    • RaptorX: exploiting structure information for protein alignments by statistical inference
    • Peng J, Xu J. RaptorX: exploiting structure information for protein alignments by statistical inference. Proteins. 2011;79(S10):161-71.
    • (2011) Proteins , vol.79 , pp. 161-171
    • Peng, J.1    Xu, J.2
  • 15
    • 84966702489 scopus 로고    scopus 로고
    • A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling
    • Li J, Cheng J. A Stochastic Point Cloud Sampling Method for Multi-Template Protein Comparative Modeling. Sci rep. 2016;6:25687.
    • (2016) Sci rep , vol.6 , pp. 25687
    • Li, J.1    Cheng, J.2
  • 16
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002;2(3):18-22.
    • (2002) R news , vol.2 , Issue.3 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 17
    • 84946763468 scopus 로고    scopus 로고
    • De novo protein conformational sampling using a probabilistic graphical model
    • Bhattacharya D, Cheng J. De novo protein conformational sampling using a probabilistic graphical model. Sci rep. 2015;5:16332.
    • (2015) Sci rep , vol.5 , pp. 16332
    • Bhattacharya, D.1    Cheng, J.2
  • 18
    • 84955127996 scopus 로고    scopus 로고
    • Benchmarking deep networks for predicting residue-specific quality of individual protein models in CASP11
    • Liu T, Wang Y, Eickholt J, Wang Z. Benchmarking deep networks for predicting residue-specific quality of individual protein models in CASP11. Sci Rep. 2016;6:19301.
    • (2016) Sci Rep , vol.6 , pp. 19301
    • Liu, T.1    Wang, Y.2    Eickholt, J.3    Wang, Z.4
  • 19
    • 84992217836 scopus 로고    scopus 로고
    • UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling
    • Bhattacharya D, Cao R, Cheng J. UniCon3D: de novo protein structure prediction using united-residue conformational search via stepwise, probabilistic sampling. Bioinformatics. 2016;32(18):2791-9. doi: 10.1093/bioinformatics/btw316.
    • (2016) Bioinformatics , vol.32 , Issue.18 , pp. 2791-2799
    • Bhattacharya, D.1    Cao, R.2    Cheng, J.3
  • 22
    • 39149099199 scopus 로고    scopus 로고
    • The ModFOLD server for the quality assessment of protein structural models
    • McGuffin L. The ModFOLD server for the quality assessment of protein structural models. Bioinformatics. 2008;24(4):586-7.
    • (2008) Bioinformatics , vol.24 , Issue.4 , pp. 586-587
    • McGuffin, L.1
  • 23
    • 80855128723 scopus 로고    scopus 로고
    • MUFOLD-WQA: a new selective consensus method for quality assessment in protein structure prediction
    • Wang Q, Vantasin K, Xu D, Shang Y. MUFOLD-WQA: a new selective consensus method for quality assessment in protein structure prediction. Proteins. 2011;79(SupplementS10):185-95.
    • (2011) Proteins , vol.79 , pp. 185-195
    • Wang, Q.1    Vantasin, K.2    Xu, D.3    Shang, Y.4
  • 24
    • 77950478720 scopus 로고    scopus 로고
    • Rapid model quality assessment for protein structure predictions using the comparison of multiple models without structural alignments
    • McGuffin L, Roche D. Rapid model quality assessment for protein structure predictions using the comparison of multiple models without structural alignments. Bioinformatics. 2010;26(2):182-8.
    • (2010) Bioinformatics , vol.26 , Issue.2 , pp. 182-188
    • McGuffin, L.1    Roche, D.2
  • 25
    • 84946236899 scopus 로고    scopus 로고
    • Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11
    • Cao R, Bhattacharya D, Adhikari B, Li J, Cheng J. Massive integration of diverse protein quality assessment methods to improve template based modeling in CASP11. Proteins: Structure, Function, and Bioinformatics. 2015;84:247-59. doi: 10.1002/prot.24924.
    • (2015) Proteins: Structure, Function, and Bioinformatics , vol.84 , pp. 247-259
    • Cao, R.1    Bhattacharya, D.2    Adhikari, B.3    Li, J.4    Cheng, J.5
  • 27
    • 84899522371 scopus 로고    scopus 로고
    • Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment
    • Cao R, Wang Z, Cheng J. Designing and evaluating the MULTICOM protein local and global model quality prediction methods in the CASP10 experiment. BMC Struct Biol. 2014;14(1):13.
    • (2014) BMC Struct Biol , vol.14 , Issue.1 , pp. 13
    • Cao, R.1    Wang, Z.2    Cheng, J.3
  • 28
    • 84899950974 scopus 로고    scopus 로고
    • SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines
    • Cao R, Wang Z, Wang Y, Cheng J. SMOQ: a tool for predicting the absolute residue-specific quality of a single protein model with support vector machines. BMC Bioinf. 2014;15(1):120.
    • (2014) BMC Bioinf , vol.15 , Issue.1 , pp. 120
    • Cao, R.1    Wang, Z.2    Wang, Y.3    Cheng, J.4
  • 29
    • 34247281977 scopus 로고    scopus 로고
    • Effects of amino acid composition, finite size of proteins, and sparse statistics on distance-dependent statistical pair potentials
    • Rykunov D, Fiser A. Effects of amino acid composition, finite size of proteins, and sparse statistics on distance-dependent statistical pair potentials. Proteins: Struct Funct Bioinf. 2007;67(3):559-68.
    • (2007) Proteins: Struct Funct Bioinf , vol.67 , Issue.3 , pp. 559-568
    • Rykunov, D.1    Fiser, A.2
  • 30
    • 78149453870 scopus 로고    scopus 로고
    • A novel side-chain orientation dependent potential derived from random-walk reference state for protein fold selection and structure prediction
    • Zhang J, Zhang Y. A novel side-chain orientation dependent potential derived from random-walk reference state for protein fold selection and structure prediction. PLoS One. 2010;5(10):e15386.
    • (2010) PLoS One , vol.5 , Issue.10
    • Zhang, J.1    Zhang, Y.2
  • 31
    • 66149156968 scopus 로고    scopus 로고
    • Evaluating the absolute quality of a single protein model using structural features and support vector machines
    • Wang Z, Tegge AN, Cheng J. Evaluating the absolute quality of a single protein model using structural features and support vector machines. Proteins. 2009;75(3):638-47.
    • (2009) Proteins , vol.75 , Issue.3 , pp. 638-647
    • Wang, Z.1    Tegge, A.N.2    Cheng, J.3
  • 32
    • 33749578940 scopus 로고    scopus 로고
    • Statistical potential for assessment and prediction of protein structures
    • Shen M, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci. 2006;15(11):2507-24.
    • (2006) Protein Sci , vol.15 , Issue.11 , pp. 2507-2524
    • Shen, M.1    Sali, A.2
  • 33
    • 84962409085 scopus 로고    scopus 로고
    • Protein single-model quality assessment by feature-based probability density functions
    • Cao R, Cheng J. Protein single-model quality assessment by feature-based probability density functions. Sci Rep. 2016;6:23990.
    • (2016) Sci Rep , vol.6 , pp. 23990
    • Cao, R.1    Cheng, J.2
  • 34
    • 77952850689 scopus 로고    scopus 로고
    • Quality assessment of protein model-structures using evolutionary conservation
    • Kalman M, Ben-Tal N. Quality assessment of protein model-structures using evolutionary conservation. Bioinformatics. 2010;26(10):1299-307.
    • (2010) Bioinformatics , vol.26 , Issue.10 , pp. 1299-1307
    • Kalman, M.1    Ben-Tal, N.2
  • 35
    • 0026610767 scopus 로고
    • Assessment of protein models with three-dimensional profiles
    • Liithy R, Bowie J, Eisenberg D. Assessment of protein models with three-dimensional profiles. Nature. 1992;356:83-5.
    • (1992) Nature , vol.356 , pp. 83-85
    • Liithy, R.1    Bowie, J.2    Eisenberg, D.3
  • 36
    • 84865844930 scopus 로고    scopus 로고
    • Improved model quality assessment using ProQ2
    • Ray A, Lindahl E, Wallner B. Improved model quality assessment using ProQ2. BMC Bioinf. 2012;13(1):224.
    • (2012) BMC Bioinf , vol.13 , Issue.1 , pp. 224
    • Ray, A.1    Lindahl, E.2    Wallner, B.3
  • 37
    • 84882263302 scopus 로고    scopus 로고
    • Capturing native/native like structures with a physico-chemical metric (pcSM) in protein folding
    • Mishra A, Rao S, Mittal A, Jayaram B. Capturing native/native like structures with a physico-chemical metric (pcSM) in protein folding. Biochim Biophys Acta Proteins Proteomics. 2013;1834(8):1520-31.
    • (2013) Biochim Biophys Acta Proteins Proteomics , vol.1834 , Issue.8 , pp. 1520-1531
    • Mishra, A.1    Rao, S.2    Mittal, A.3    Jayaram, B.4
  • 38
    • 79551613290 scopus 로고    scopus 로고
    • Toward the estimation of the absolute quality of individual protein structure models
    • Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011;27(3):343-50.
    • (2011) Bioinformatics , vol.27 , Issue.3 , pp. 343-350
    • Benkert, P.1    Biasini, M.2    Schwede, T.3
  • 39
    • 84907271392 scopus 로고    scopus 로고
    • Random forest-based protein model quality assessment (RFMQA) using structural features and potential energy terms
    • Manavalan B, Lee J, Lee J. Random forest-based protein model quality assessment (RFMQA) using structural features and potential energy terms. PLoS One. 2014;9(9):e106542.
    • (2014) PLoS One , vol.9 , Issue.9
    • Manavalan, B.1    Lee, J.2    Lee, J.3
  • 40
    • 84966349243 scopus 로고    scopus 로고
    • ProQ2: Estimation of Model Accuracy Implemented in Rosetta
    • Uziela K, Wallner B. ProQ2: Estimation of Model Accuracy Implemented in Rosetta. Bioinformatics. 2016;32(9):1411-3.
    • (2016) Bioinformatics , vol.32 , Issue.9 , pp. 1411-1413
    • Uziela, K.1    Wallner, B.2
  • 41
    • 85000509006 scopus 로고    scopus 로고
    • ProQ3: improved model quality assessments using Rosetta energy terms\
    • arXiv preprint arXiv:160205832
    • Uziela K, Wallner B, Elofsson A. ProQ3: improved model quality assessments using Rosetta energy terms. 2016. arXiv preprint arXiv:160205832.
    • (2016)
    • Uziela, K.1    Wallner, B.2    Elofsson, A.3
  • 42
    • 84959329050 scopus 로고    scopus 로고
    • ResQ: an approach to unified estimation of B-factor and residue-specific error in protein structure prediction
    • Yang J, Wang Y, Zhang Y. ResQ: an approach to unified estimation of B-factor and residue-specific error in protein structure prediction. J Mol Biol. 2016;428(4):693-701.
    • (2016) J Mol Biol , vol.428 , Issue.4 , pp. 693-701
    • Yang, J.1    Wang, Y.2    Zhang, Y.3
  • 43
    • 84930630277 scopus 로고    scopus 로고
    • Deep learning
    • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436-44.
    • (2015) Nature , vol.521 , Issue.7553 , pp. 436-444
    • LeCun, Y.1    Bengio, Y.2    Hinton, G.3
  • 44
    • 84906486716 scopus 로고    scopus 로고
    • Generic object detection with dense neural patterns and regionlets
    • arXiv preprint arXiv:14044316.
    • Zou WY, Wang X, Sun M, Lin Y. Generic object detection with dense neural patterns and regionlets. 2014. arXiv preprint arXiv:14044316.
    • (2014)
    • Zou, W.Y.1    Wang, X.2    Sun, M.3    Lin, Y.4
  • 46
    • 84870415234 scopus 로고    scopus 로고
    • Predicting protein residue-residue contacts using deep networks and boosting
    • Eickholt J, Cheng J. Predicting protein residue-residue contacts using deep networks and boosting. Bioinformatics. 2012;28(23):3066-72.
    • (2012) Bioinformatics , vol.28 , Issue.23 , pp. 3066-3072
    • Eickholt, J.1    Cheng, J.2
  • 47
    • 84962320188 scopus 로고    scopus 로고
    • 3DRobot: automated generation of diverse and well-packed protein structure decoys
    • Deng H, Jia Y, Zhang Y. 3DRobot: automated generation of diverse and well-packed protein structure decoys. Bioinformatics. 2016;32(3):378-87.
    • (2016) Bioinformatics , vol.32 , Issue.3 , pp. 378-387
    • Deng, H.1    Jia, Y.2    Zhang, Y.3
  • 48
    • 0043180474 scopus 로고    scopus 로고
    • PISCES: a protein sequence culling server
    • Wang G, Dunbrack RL. PISCES: a protein sequence culling server. Bioinformatics. 2003;19(12):1589-91.
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1589-1591
    • Wang, G.1    Dunbrack, R.L.2
  • 49
    • 0031585984 scopus 로고    scopus 로고
    • Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions
    • Simons K, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J Mol Biol. 1997;268(1):209-25.
    • (1997) J Mol Biol , vol.268 , Issue.1 , pp. 209-225
    • Simons, K.1    Kooperberg, C.2    Huang, E.3    Baker, D.4
  • 50
    • 0141978673 scopus 로고    scopus 로고
    • Comparative protein structure modeling by iterative alignment, model building and model assessment
    • John B, Sali A. Comparative protein structure modeling by iterative alignment, model building and model assessment. Nucleic Acids Res. 2003;31(14):3982-92.
    • (2003) Nucleic Acids Res , vol.31 , Issue.14 , pp. 3982-3992
    • John, B.1    Sali, A.2
  • 51
    • 10344232638 scopus 로고    scopus 로고
    • Scoring function for automated assessment of protein structure template quality
    • Zhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins: Struct Funct Bioinf. 2004;57(4):702-10.
    • (2004) Proteins: Struct Funct Bioinf , vol.57 , Issue.4 , pp. 702-710
    • Zhang, Y.1    Skolnick, J.2
  • 52
    • 0042622381 scopus 로고    scopus 로고
    • LGA: a method for finding 3D similarities in protein structures
    • Zemla A. LGA: a method for finding 3D similarities in protein structures. Nucleic Acids Res. 2003;31(13):3370-4.
    • (2003) Nucleic Acids Res , vol.31 , Issue.13 , pp. 3370-3374
    • Zemla, A.1
  • 53
    • 80054694711 scopus 로고    scopus 로고
    • GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction
    • Zhou H, Skolnick J. GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys J. 2011;101(8):2043-52.
    • (2011) Biophys J , vol.101 , Issue.8 , pp. 2043-2052
    • Zhou, H.1    Skolnick, J.2
  • 54
    • 34250829219 scopus 로고    scopus 로고
    • OPUS-Ca: a knowledge-based potential function requiring only Cα positions
    • Wu Y, Lu M, Chen M, Li J, Ma J. OPUS-Ca: a knowledge-based potential function requiring only Cα positions. Protein Sci. 2007;16(7):1449-63.
    • (2007) Protein Sci , vol.16 , Issue.7 , pp. 1449-1463
    • Wu, Y.1    Lu, M.2    Chen, M.3    Li, J.4    Ma, J.5
  • 55
    • 46449132707 scopus 로고    scopus 로고
    • Specific interactions for ab initio folding of protein terminal regions with secondary structures
    • Yang Y, Zhou Y. Specific interactions for ab initio folding of protein terminal regions with secondary structures. Proteins: Struct Funct Bioinf. 2008;72(2):793-803.
    • (2008) Proteins: Struct Funct Bioinf , vol.72 , Issue.2 , pp. 793-803
    • Yang, Y.1    Zhou, Y.2
  • 56
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton GE. Training products of experts by minimizing contrastive divergence. Neural Comput. 2002;14(8):1771-800.
    • (2002) Neural Comput , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 57
    • 34547521683 scopus 로고    scopus 로고
    • An improved learning algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for back propagation neural networks
    • IEEE.IEEE Computer SocietyWashington, DC, USA.
    • Nawi NM, Ransing MR, Ransing RS: An improved learning algorithm based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method for back propagation neural networks.In Sixth International Conference on Intelligent Systems Design and Applications(Vol. 1, pp. 152-157). IEEE.ISBN:0-7695-2528-8.IEEE Computer SocietyWashington, DC, USA.
    • In Sixth International Conference on Intelligent Systems Design and Applications , vol.1 , pp. 152-157
    • Nawi, N.M.1    Ransing, M.R.2    Ransing, R.S3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.