메뉴 건너뛰기




Volumn 9852 LNAI, Issue , 2016, Pages 1-16

AUC-maximized deep convolutional neural fields for protein sequence labeling

Author keywords

[No Author keywords available]

Indexed keywords

ARTIFICIAL INTELLIGENCE; CONVOLUTION; FORECASTING; LEARNING ALGORITHMS; MAXIMUM LIKELIHOOD; NEURAL NETWORKS; RANDOM PROCESSES;

EID: 84988556622     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-46227-1_1     Document Type: Conference Paper
Times cited : (25)

References (48)
  • 2
    • 2942564430 scopus 로고    scopus 로고
    • Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence
    • Blom, N., Sicheritz-Pontén, T., Gupta, R., Gammeltoft, S., Brunak, S.: Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4(6), 1633–1649 (2004)
    • (2004) Proteomics , vol.4 , Issue.6 , pp. 1633-1649
    • Blom, N.1    Sicheritz-Pontén, T.2    Gupta, R.3    Gammeltoft, S.4    Brunak, S.5
  • 3
    • 38049177755 scopus 로고    scopus 로고
    • Efficient AUC optimization for classification
    • Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.), Springer, Heidelberg
    • Calders, T., Jaroszewicz, S.: Efficient AUC optimization for classification. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS(LNAI), vol. 4702, pp. 42–53. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74976-9_8
    • (2007) PKDD 2007. LNCS(LNAI) , vol.4702 , pp. 42-53
    • Calders, T.1    Jaroszewicz, S.2
  • 6
    • 0017187836 scopus 로고
    • The nature of the accessible and buried surfaces in proteins
    • Chothia, C.: The nature of the accessible and buried surfaces in proteins. J. Mol. Biol. 105(1), 1–12 (1976)
    • (1976) J. Mol. Biol , vol.105 , Issue.1 , pp. 1-12
    • Chothia, C.1
  • 7
    • 84897965802 scopus 로고    scopus 로고
    • Auc optimization vs. Error rate minimization
    • Cortes, C., Mohri, M.: Auc optimization vs. error rate minimization. Adv. Neural Inf. Process. Syst. 16(16), 313–320 (2004)
    • (2004) Adv. Neural Inf. Process. Syst , vol.16 , Issue.16 , pp. 313-320
    • Cortes, C.1    Mohri, M.2
  • 8
    • 84555190723 scopus 로고    scopus 로고
    • Weighted conditional random fields for supervised interpatient heartbeat classification
    • De Lannoy, G., François, D., Delbeke, J., Verleysen, M.: Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 59(1), 241–247 (2012)
    • (2012) IEEE Trans. Biomed. Eng , vol.59 , Issue.1 , pp. 241-247
    • De Lannoy, G.1    François, D.2    Delbeke, J.3    Verleysen, M.4
  • 9
    • 84867316765 scopus 로고    scopus 로고
    • Deep architectures for protein contact map prediction
    • Di Lena, P., Nagata, K., Baldi, P.: Deep architectures for protein contact map prediction. Bioinformatics 28(19), 2449–2457 (2012)
    • (2012) Bioinformatics , vol.28 , Issue.19 , pp. 2449-2457
    • Di Lena, P.1    Nagata, K.2    Baldi, P.3
  • 10
    • 0025370815 scopus 로고
    • Dominant forces in protein folding
    • Dill, K.A.: Dominant forces in protein folding. Biochemistry 29(31), 7133–7155 (1990)
    • (1990) Biochemistry , vol.29 , Issue.31 , pp. 7133-7155
    • Dill, K.A.1
  • 12
    • 84874545393 scopus 로고    scopus 로고
    • Dndisorder: Predicting protein disorder using boosting and deep networks
    • Eickholt, J., Cheng, J.: Dndisorder: predicting protein disorder using boosting and deep networks. BMC Bioinf. 14(1), 88 (2013)
    • (2013) BMC Bioinf , vol.14 , Issue.1 , pp. 88
    • Eickholt, J.1    Cheng, J.2
  • 13
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • Estabrooks, A., Jo, T., Japkowicz, N.: A multiple resampling method for learning from imbalanced data sets. Comput. Intell. 20(1), 18–36 (2004)
    • (2004) Comput. Intell , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 14
    • 61449123967 scopus 로고    scopus 로고
    • Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network
    • Faraggi, E., Xue, B., Zhou, Y.: Improving the prediction accuracy of residue solvent accessibility and real-value backbone torsion angles of proteins by guided-learning through a two-layer neural network. Proteins: Struct., Funct., Bioinf. 74(4), 847–856 (2009)
    • (2009) Proteins: Struct., Funct., Bioinf , vol.74 , Issue.4 , pp. 847-856
    • Faraggi, E.1    Xue, B.2    Zhou, Y.3
  • 15
    • 1942514832 scopus 로고    scopus 로고
    • Learning decision trees using the area under the ROC curve
    • Ferri, C., Flach, P., Hernández-Orallo, J.: Learning decision trees using the area under the ROC curve. In: ICML, vol. 2, pp. 139–146 (2002)
    • (2002) ICML , vol.2 , pp. 139-146
    • Ferri, C.1    Flach, P.2    Hernández-Orallo, J.3
  • 17
    • 84883481556 scopus 로고    scopus 로고
    • The protein model portala comprehensive resource for protein structure and model information
    • bat031
    • Haas, J., Roth, S., Arnold, K., Kiefer, F., Schmidt, T., Bordoli, L., Schwede, T.: The protein model portala comprehensive resource for protein structure and model information. Database 2013, bat031 (2013)
    • (2013) Database 2013
    • Haas, J.1    Roth, S.2    Arnold, K.3    Kiefer, F.4    Schmidt, T.5    Bordoli, L.6    Schwede, T.7
  • 18
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 19
    • 68749093787 scopus 로고    scopus 로고
    • Predicting intrinsic disorder in proteins: An overview
    • He, B., Wang, K., Liu, Y., Xue, B., Uversky, V.N., Dunker, A.K.: Predicting intrinsic disorder in proteins: an overview. Cell Res. 19(8), 929–949 (2009)
    • (2009) Cell Res , vol.19 , Issue.8 , pp. 929-949
    • He, B.1    Wang, K.2    Liu, Y.3    Xue, B.4    Uversky, V.N.5    Dunker, A.K.6
  • 20
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • He, H., Garcia, E., et al.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)
    • (2009) IEEE Trans. Knowl. Data Eng , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.2
  • 24
    • 84925251625 scopus 로고    scopus 로고
    • Disopred3: Precise disordered region predictions with annotated protein-binding activity
    • Jones, D.T., Cozzetto, D.: Disopred3: precise disordered region predictions with annotated protein-binding activity. Bioinformatics 31(6), 857–863 (2015)
    • (2015) Bioinformatics , vol.31 , Issue.6 , pp. 857-863
    • Jones, D.T.1    Cozzetto, D.2
  • 26
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features
    • Kabsch, W., Sander, C.: Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22(12), 2577–2637 (1983)
    • (1983) Biopolymers , vol.22 , Issue.12 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 30
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 31
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45(1–3), 503–528 (1989)
    • (1989) Math. Program , vol.45 , Issue.1-3 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 33
    • 84938356212 scopus 로고    scopus 로고
    • Acconpred: Predicting solvent accessibility and contact number simultaneously by a multitask learning framework under the conditional neural fields model
    • Ma, J., Wang, S.: Acconpred: Predicting solvent accessibility and contact number simultaneously by a multitask learning framework under the conditional neural fields model. BioMed Res. Int. 2015 (2015)
    • (2015) Biomed Res. Int , pp. 2015
    • Ma, J.1    Wang, S.2
  • 34
    • 84907487648 scopus 로고    scopus 로고
    • SSpro/ACCpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity
    • Magnan, C.N., Baldi, P.: SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 30(18), 2592–2597 (2014)
    • (2014) Bioinformatics , vol.30 , Issue.18 , pp. 2592-2597
    • Magnan, C.N.1    Baldi, P.2
  • 37
    • 84902160274 scopus 로고    scopus 로고
    • Intrinsically disordered proteins and intrinsically disordered protein regions
    • Oldfield, C.J., Dunker, A.K.: Intrinsically disordered proteins and intrinsically disordered protein regions. Ann. Rev. Biochem. 83, 553–584 (2014)
    • (2014) Ann. Rev. Biochem , vol.83 , pp. 553-584
    • Oldfield, C.J.1    Dunker, A.K.2
  • 38
    • 76549252207 scopus 로고
    • The structure of proteins: Two hydrogenbonded helical configurations of the polypeptide chain
    • Pauling, L., Corey, R.B., Branson, H.R.: The structure of proteins: two hydrogenbonded helical configurations of the polypeptide chain. Proc. Nat. Acad. Sci. 37(4), 205–211 (1951)
    • (1951) Proc. Nat. Acad. Sci , vol.37 , Issue.4 , pp. 205-211
    • Pauling, L.1    Corey, R.B.2    Branson, H.R.3
  • 41
    • 34548750953 scopus 로고    scopus 로고
    • Natively unstructured regions in proteins identified from contact predictions
    • Schlessinger, A., Punta, M., Rost, B.: Natively unstructured regions in proteins identified from contact predictions. Bioinformatics 23(18), 2376–2384 (2007)
    • (2007) Bioinformatics , vol.23 , Issue.18 , pp. 2376-2384
    • Schlessinger, A.1    Punta, M.2    Rost, B.3
  • 43
    • 85018959942 scopus 로고    scopus 로고
    • Raptorx-property: A web server for protein structure property prediction
    • gkw306
    • Wang, S., Li, W., Liu, S., Jinbo, X.: Raptorx-property: a web server for protein structure property prediction. Nucleic Acids Res., gkw306 (2016)
    • (2016) Nucleic Acids Res
    • Wang, S.1    Li, W.2    Liu, S.3    Jinbo, X.4
  • 44
    • 84954113329 scopus 로고    scopus 로고
    • Protein secondary structure prediction using deep convolutional neural fields
    • Wang, S., Peng, J., Ma, J., Jinbo, X.: Protein secondary structure prediction using deep convolutional neural fields. Sci. Rep. 6 (2016)
    • (2016) Sci. Rep , pp. 6
    • Wang, S.1    Peng, J.2    Ma, J.3    Jinbo, X.4
  • 45
    • 84938318602 scopus 로고    scopus 로고
    • Deepcnf-d: Predicting protein order/disorder regions by weighted deep convolutional neural fields
    • Wang, S., Weng, S., Ma, J., Tang, Q.: Deepcnf-d: predicting protein order/disorder regions by weighted deep convolutional neural fields. Int. J. Mol. Sci. 16(8), 17315–17330 (2015)
    • (2015) Int. J. Mol. Sci , vol.16 , Issue.8 , pp. 17315-17330
    • Wang, S.1    Weng, S.2    Ma, J.3    Tang, Q.4
  • 46
    • 80053030893 scopus 로고    scopus 로고
    • Protein 8-class secondary structure prediction using conditional neural fields
    • Wang, Z., Zhao, F., Peng, J., Jinbo, X.: Protein 8-class secondary structure prediction using conditional neural fields. Proteomics 11(19), 3786–3792 (2011)
    • (2011) Proteomics , vol.11 , Issue.19 , pp. 3786-3792
    • Wang, Z.1    Zhao, F.2    Peng, J.3    Jinbo, X.4
  • 47
    • 84988586562 scopus 로고    scopus 로고
    • Protein Homology Detection Through Alignment of Markov Random Fields: Using MRFalign
    • Springer, Heidelberg
    • Jinbo, X., Wang, S., Ma, J.: Protein Homology Detection Through Alignment of Markov Random Fields: Using MRFalign. SpringerBriefs in Computer Science. Springer, Heidelberg (2015)
    • (2015) Springerbriefs in Computer Science
    • Jinbo, X.1    Wang, S.2    Ma, J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.