메뉴 건너뛰기




Volumn 6, Issue , 2016, Pages

Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN;

EID: 84954113329     PISSN: None     EISSN: 20452322     Source Type: Journal    
DOI: 10.1038/srep18962     Document Type: Article
Times cited : (482)

References (79)
  • 1
    • 0035812694 scopus 로고    scopus 로고
    • Protein structure prediction and structural genomics
    • Baker, D. & Sali, A. Protein structure prediction and structural genomics. Science 294, 93-96 (2001).
    • (2001) Science , vol.294 , pp. 93-96
    • Baker, D.1    Sali, A.2
  • 2
    • 84869761071 scopus 로고    scopus 로고
    • The protein-folding problem, 50 years on
    • Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science 338, 1042-1046 (2012).
    • (2012) Science , vol.338 , pp. 1042-1046
    • Dill, K.A.1    MacCallum, J.L.2
  • 5
    • 84860539715 scopus 로고    scopus 로고
    • Advances in structure-based drug design
    • Schaffhausen, J. Advances in structure-based drug design. Trends Pharmacol. Sci. 33, 223 (2012).
    • (2012) Trends Pharmacol. Sci. , vol.33 , pp. 223
    • Schaffhausen, J.1
  • 6
    • 0346799108 scopus 로고    scopus 로고
    • Prediction of protein function from protein sequence and structure
    • Whisstock, J. C. & Lesk, A. M. Prediction of protein function from protein sequence and structure. Q. Rev. Biophys. 36, 307-340 (2003).
    • (2003) Q. Rev. Biophys. , vol.36 , pp. 307-340
    • Whisstock, J.C.1    Lesk, A.M.2
  • 7
    • 36448988254 scopus 로고    scopus 로고
    • Predicting protein function from sequence and structure
    • Lee, D., Redfern, O. & Orengo, C. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8, 995-1005 (2007).
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 995-1005
    • Lee, D.1    Redfern, O.2    Orengo, C.3
  • 8
    • 84874663959 scopus 로고    scopus 로고
    • A large-scale evaluation of computational protein function prediction
    • Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10, 221-227 (2013).
    • (2013) Nat. Methods , vol.10 , pp. 221-227
    • Radivojac, P.1
  • 10
    • 13444266488 scopus 로고    scopus 로고
    • A simple and fast secondary structure prediction method using hidden neural networks
    • Lin, K., Simossis, V. A., Taylor, W. R. & Heringa, J. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21, 152-159 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 152-159
    • Lin, K.1    Simossis, V.A.2    Taylor, W.R.3    Heringa, J.4
  • 11
    • 71549152918 scopus 로고    scopus 로고
    • Machine learning techniques for protein secondary structure prediction: An overview and evaluation
    • Yoo, P. D., Zhou, B. B. & Zomaya, A. Y. Machine learning techniques for protein secondary structure prediction: an overview and evaluation. Current Bioinformatics 3, 74-86 (2008).
    • (2008) Current Bioinformatics , vol.3 , pp. 74-86
    • Yoo, P.D.1    Zhou, B.B.2    Zomaya, A.Y.3
  • 12
    • 83855162773 scopus 로고    scopus 로고
    • SPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
    • Faraggi, E., Zhang, T., Yang, Y., Kurgan, L. & Zhou, Y. SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J. Comp. Chem. 33, 259-267 (2012).
    • (2012) J. Comp. Chem. , vol.33 , pp. 259-267
    • Faraggi, E.1    Zhang, T.2    Yang, Y.3    Kurgan, L.4    Zhou, Y.5
  • 13
    • 76549252207 scopus 로고
    • The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain
    • Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 37, 205-211 (1951).
    • (1951) Proc. Natl. Acad. Sci. USA , vol.37 , pp. 205-211
    • Pauling, L.1    Corey, R.B.2    Branson, H.R.3
  • 14
    • 0020997912 scopus 로고
    • Dictionary of protein secondary structure: Pattern recognition of hydrogen - bonded and geometrical features
    • Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen - bonded and geometrical features. Biopolymers 22, 2577-2637 (1983).
    • (1983) Biopolymers , vol.22 , pp. 2577-2637
    • Kabsch, W.1    Sander, C.2
  • 15
    • 0035005366 scopus 로고    scopus 로고
    • Preorganized secondary structure as an important determinant of fast protein folding
    • Myers, J. K. & Oas, T. G. Preorganized secondary structure as an important determinant of fast protein folding. Nat. Struct. Mol. Biol. 8, 552-558 (2001).
    • (2001) Nat. Struct. Mol. Biol. , vol.8 , pp. 552-558
    • Myers, J.K.1    Oas, T.G.2
  • 16
    • 84864448769 scopus 로고    scopus 로고
    • Template-based protein structure modeling using the RaptorX web server
    • Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nature protocols 7, 1511-1522 (2012).
    • (2012) Nature Protocols , vol.7 , pp. 1511-1522
    • Källberg, M.1
  • 17
    • 39449115394 scopus 로고    scopus 로고
    • I-TASSER server for protein 3D structure prediction
    • Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).
    • (2008) BMC Bioinformatics , vol.9 , pp. 40
    • Zhang, Y.1
  • 18
    • 0031585984 scopus 로고    scopus 로고
    • Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions
    • Simons, K. T., Kooperberg, C., Huang, E. & Baker, D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209-225 (1997).
    • (1997) J. Mol. Biol. , Issue.268 , pp. 209-225
    • Simons, K.T.1    Kooperberg, C.2    Huang, E.3    Baker, D.4
  • 19
    • 0000268209 scopus 로고
    • Protein secondary structure prediction with a neural network
    • Holley, L. H. & Karplus, M. Protein secondary structure prediction with a neural network. Proc. Natl. Acad. Sci. USA 86, 152-156 (1989).
    • (1989) Proc. Natl. Acad. Sci. USA , vol.86 , pp. 152-156
    • Holley, L.H.1    Karplus, M.2
  • 20
    • 0023803244 scopus 로고
    • Predicting the secondary structure of globular proteins using neural network models
    • Qian, N. & Sejnowski, T. J. Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202, 865-884 (1988).
    • (1988) J. Mol. Biol. , vol.202 , pp. 865-884
    • Qian, N.1    Sejnowski, T.J.2
  • 21
    • 0025334980 scopus 로고
    • Improvements in protein secondary structure prediction by an enhanced neural network
    • Kneller, D., Cohen, F. & Langridge, R. Improvements in protein secondary structure prediction by an enhanced neural network. J. Mol. Biol. 214, 171-182 (1990).
    • (1990) J. Mol. Biol. , vol.214 , pp. 171-182
    • Kneller, D.1    Cohen, F.2    Langridge, R.3
  • 22
    • 0027174134 scopus 로고
    • Prediction of protein secondary structure by the hidden Markov model
    • Asai, K., Hayamizu, S. & Handa, K. I. Prediction of protein secondary structure by the hidden Markov model. Comput. Appl. Biosci. 9, 141-146 (1993).
    • (1993) Comput. Appl. Biosci , vol.9 , pp. 141-146
    • Asai, K.1    Hayamizu, S.2    Handa, K.I.3
  • 23
    • 0027291015 scopus 로고
    • Prediction of protein secondary structure at better than 70% accuracy
    • Rost, B. & Sander, C. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584-599 (1993).
    • (1993) J. Mol. Biol. , vol.232 , pp. 584-599
    • Rost, B.1    Sander, C.2
  • 24
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195-202 (1999).
    • (1999) J. Mol. Biol. , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 25
    • 0034047548 scopus 로고    scopus 로고
    • Bayesian segmentation of protein secondary structure
    • Schmidler, S. C., Liu, J. S. & Brutlag, D. L. Bayesian segmentation of protein secondary structure. J. Comput. Biol. 7, 233-248 (2000).
    • (2000) J. Comput. Biol. , vol.7 , pp. 233-248
    • Schmidler, S.C.1    Liu, J.S.2    Brutlag, D.L.3
  • 26
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • Pollastri, G., Przybylski, D., Rost, B. & Baldi, P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins: Struct. Funct. Bioinform. 47, 228-235 (2002).
    • (2002) Proteins: Struct. Funct. Bioinform , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 27
    • 0141593924 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on an improved support vector machines approach
    • Kim, H. & Park, H. Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng. 16, 553-560 (2003).
    • (2003) Protein Eng. , vol.16 , pp. 553-560
    • Kim, H.1    Park, H.2
  • 28
    • 0141738785 scopus 로고    scopus 로고
    • Secondary structure prediction with support vector machines
    • Ward, J. J., McGuffin, L. J., Buxton, B. F. & Jones, D. T. Secondary structure prediction with support vector machines. Bioinformatics 19, 1650-1655 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 1650-1655
    • Ward, J.J.1    McGuffin, L.J.2    Buxton, B.F.3    Jones, D.T.4
  • 29
    • 14344264952 scopus 로고    scopus 로고
    • A graphical model for protein secondary structure prediction
    • Banff, Alberta, Canada, July 4-8, 2004. ACM International Conference Proceeding Series 69, ACM 2004
    • Chu, W., Ghahramani, Z. & Wild, D. L. A graphical model for protein secondary structure prediction. Proceedings of the Twenty-first International Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004. ACM International Conference Proceeding Series, ACM 2004, 21 (2004).
    • (2004) Proceedings of the Twenty-first International Conference (ICML 2004) , vol.69
    • Chu, W.1    Ghahramani, Z.2    Wild, D.L.3
  • 30
    • 1542346418 scopus 로고    scopus 로고
    • A novel method for protein secondary structure prediction using dual - layer SVM and profiles
    • Guo, J., Chen, H., Sun, Z. & Lin, Y. A novel method for protein secondary structure prediction using dual - layer SVM and profiles. Proteins: Struct. Funct. Bioinform. 54, 738-743 (2004).
    • (2004) Proteins: Struct. Funct. Bioinform , vol.54 , pp. 738-743
    • Guo, J.1    Chen, H.2    Sun, Z.3    Lin, Y.4
  • 31
    • 33745259286 scopus 로고    scopus 로고
    • Protein secondary structure prediction for a single-sequence using hidden semi-Markov models
    • Aydin, Z., Altunbasak, Y. & Borodovsky, M. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models. BMC Bioinformatics 7, 178 (2006).
    • (2006) BMC Bioinformatics , vol.7 , pp. 178
    • Aydin, Z.1    Altunbasak, Y.2    Borodovsky, M.3
  • 33
    • 80053030893 scopus 로고    scopus 로고
    • Protein 8 - class secondary structure prediction using conditional neural fields
    • Wang, Z., Zhao, F., Peng, J. & Xu, J. Protein 8 - class secondary structure prediction using conditional neural fields. Proteomics 11, 3786-3792 (2011).
    • (2011) Proteomics , vol.11 , pp. 3786-3792
    • Wang, Z.1    Zhao, F.2    Peng, J.3    Xu, J.4
  • 34
    • 84907487648 scopus 로고    scopus 로고
    • SSpro/ACCpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity
    • Magnan, C. N. & Baldi, P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 30, 2592-2597 (2014).
    • (2014) Bioinformatics , vol.30 , pp. 2592-2597
    • Magnan, C.N.1    Baldi, P.2
  • 35
    • 0023660653 scopus 로고
    • Prediction of protein secondary structure and active sites using the alignment of homologous sequences
    • Zvelebil, M. J., Barton, G. J., Taylor, W. R. & Sternberg, M. J. Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J. Mol. Biol. 195, 957-961 (1987).
    • (1987) J. Mol. Biol. , vol.195 , pp. 957-961
    • Zvelebil, M.J.1    Barton, G.J.2    Taylor, W.R.3    Sternberg, M.J.4
  • 37
    • 0033369033 scopus 로고    scopus 로고
    • Exploiting the past and the future in protein secondary structure prediction
    • Baldi, P., Brunak, S., Frasconi, P., Soda, G. & Pollastri, G. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15, 937-946 (1999).
    • (1999) Bioinformatics , vol.15 , pp. 937-946
    • Baldi, P.1    Brunak, S.2    Frasconi, P.3    Soda, G.4    Pollastri, G.5
  • 38
    • 0024234855 scopus 로고
    • CLUSTAL: A package for performing multiple sequence alignment on a microcomputer
    • Higgins, D. G. & Sharp, P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237-244 (1988).
    • (1988) Gene , vol.73 , pp. 237-244
    • Higgins, D.G.1    Sharp, P.M.2
  • 39
    • 3042666256 scopus 로고    scopus 로고
    • MUSCLE: Multiple sequence alignment with high accuracy and high throughput
    • Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797 (2004).
    • (2004) Nucleic Acids Res. , vol.32 , pp. 1792-1797
    • Edgar, R.C.1
  • 40
    • 0027968068 scopus 로고
    • CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
    • Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res. 22, 4673-4680 (1994).
    • (1994) Nucleic Acids Res. , vol.22 , pp. 4673-4680
    • Thompson, J.D.1    Higgins, D.G.2    Gibson, T.J.3
  • 41
    • 0030801002 scopus 로고    scopus 로고
    • Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
    • Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 (1997).
    • (1997) Nucleic Acids Res. , vol.25 , pp. 3389-3402
    • Altschul, S.F.1
  • 43
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • Hua, S. & Sun, Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J. Mol. Biol. 308, 397-407 (2001).
    • (2001) J. Mol. Biol. , vol.308 , pp. 397-407
    • Hua, S.1    Sun, Z.2
  • 44
    • 84923265167 scopus 로고    scopus 로고
    • A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
    • Spencer, M., Eickholt, J. & Cheng, J. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 12, 103-112 (2015).
    • (2015) IEEE/ACM Trans. Comput. Biol. Bioinform , vol.12 , pp. 103-112
    • Spencer, M.1    Eickholt, J.2    Cheng, J.3
  • 45
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504-507 (2006).
    • (2006) Science , vol.313 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 46
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771-1800 (2002).
    • (2002) Neural Comput , vol.14 , pp. 1771-1800
    • Hinton, G.1
  • 49
    • 0033081846 scopus 로고    scopus 로고
    • A modified definition of Sov, a segment - based measure for protein secondary structure prediction assessment
    • Zemla, A., Venclovas, Č., Fidelis, K. & Rost, B. A modified definition of Sov, a segment - based measure for protein secondary structure prediction assessment. Proteins: Struct. Funct. Bioinform. 34, 220-223 (1999).
    • (1999) Proteins: Struct. Funct. Bioinform , vol.34 , pp. 220-223
    • Zemla, A.1    Venclovas, Č.2    Fidelis, K.3    Rost, B.4
  • 53
    • 0043180474 scopus 로고    scopus 로고
    • PISCES: A protein sequence culling server
    • Wang, G. & Dunbrack, R. L. PISCES: a protein sequence culling server. Bioinformatics 19, 1589-1591 (2003).
    • (2003) Bioinformatics , vol.19 , pp. 1589-1591
    • Wang, G.1    Dunbrack, R.L.2
  • 54
    • 84892964425 scopus 로고    scopus 로고
    • Assessment of the assessment: Evaluation of the model quality estimates in CASP10
    • Kryshtafovych, A. et al. Assessment of the assessment: evaluation of the model quality estimates in CASP10. Proteins: Struct. Funct. Bioinform. 82, 112-126 (2014).
    • (2014) Proteins: Struct. Funct. Bioinform , vol.82 , pp. 112-126
    • Kryshtafovych, A.1
  • 56
    • 84941039390 scopus 로고    scopus 로고
    • CATH: Comprehensive structural and functional annotations for genome sequences
    • Sillitoe, I. et al. CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 43, D376-D381 (2015).
    • (2015) Nucleic Acids Res. , vol.43 , pp. D376-D381
    • Sillitoe, I.1
  • 58
    • 0035914053 scopus 로고    scopus 로고
    • Protein secondary structure: Category assignment and predictability
    • Andersen, C. A., Bohr, H. & Brunak, S. Protein secondary structure: category assignment and predictability. FEBS Lett. 507, 6-10 (2001).
    • (2001) FEBS Lett. , vol.507 , pp. 6-10
    • Andersen, C.A.1    Bohr, H.2    Brunak, S.3
  • 59
    • 1442335006 scopus 로고    scopus 로고
    • Length preferences and periodicity in β - strands. Antiparallel edge β - sheets are more likely to finish in non - hydrogen bonded rings
    • Penel, S., Morrison, R. G., Dobson, P. D., Mortishire - Smith, R. J. & Doig, A. J.Length preferences and periodicity in β - strands. Antiparallel edge β - sheets are more likely to finish in non - hydrogen bonded rings. Protein Eng. 16, 957-961 (2003).
    • (2003) Protein Eng. , vol.16 , pp. 957-961
    • Penel, S.1    Morrison, R.G.2    Dobson, P.D.3    Mortishire - Smith, R.J.4    Doig, A.J.5
  • 63
    • 84862184719 scopus 로고    scopus 로고
    • Sann: Solvent accessibility prediction of proteins by nearest neighbor method
    • Joo, K., Lee, S. J. & Lee, J. Sann: Solvent accessibility prediction of proteins by nearest neighbor method. Proteins: Struct. Funct. Bioinform. 80, 1791-1797 (2012).
    • (2012) Proteins: Struct. Funct. Bioinform , vol.80 , pp. 1791-1797
    • Joo, K.1    Lee, S.J.2    Lee, J.3
  • 64
    • 61449123967 scopus 로고    scopus 로고
    • Improving the prediction accuracy of residue solvent accessibility and real - value backbone torsion angles of proteins by guided - learning through a two - layer neural network
    • Faraggi, E., Xue, B. & Zhou, Y. Improving the prediction accuracy of residue solvent accessibility and real - value backbone torsion angles of proteins by guided - learning through a two - layer neural network. Proteins: Struct. Funct. Bioinform. 74, 847-856 (2009).
    • (2009) Proteins: Struct. Funct. Bioinform , vol.74 , pp. 847-856
    • Faraggi, E.1    Xue, B.2    Zhou, Y.3
  • 65
    • 10844226577 scopus 로고    scopus 로고
    • Predicting absolute contact numbers of native protein structure from amino acid sequence
    • Kinjo, A. R., Horimoto, K. & Nishikawa, K. Predicting absolute contact numbers of native protein structure from amino acid sequence. Proteins: Struct. Funct. Bioinform. 58, 158-165 (2005).
    • (2005) Proteins: Struct. Funct. Bioinform , vol.58 , pp. 158-165
    • Kinjo, A.R.1    Horimoto, K.2    Nishikawa, K.3
  • 66
    • 44049099330 scopus 로고    scopus 로고
    • CLePAPS: Fast pair alignment of protein structures based on conformational letters
    • Wang, S. & Zheng, W.-M. CLePAPS: fast pair alignment of protein structures based on conformational letters. J. Bioinf. Comput. Biol. 6, 347-366 (2008).
    • (2008) J. Bioinf. Comput. Biol. , vol.6 , pp. 347-366
    • Wang, S.1    Zheng, W.-M.2
  • 67
    • 80052720106 scopus 로고    scopus 로고
    • Fast multiple alignment of protein structures using conformational letter blocks
    • Wang, S. & Zheng, W.-M. Fast multiple alignment of protein structures using conformational letter blocks. Open Bioinformatics Journal 3, 69-83 (2009).
    • (2009) Open Bioinformatics Journal , vol.3 , pp. 69-83
    • Wang, S.1    Zheng, W.-M.2
  • 68
    • 84875164107 scopus 로고    scopus 로고
    • Protein structure alignment beyond spatial proximity
    • Wang, S., Ma, J., Peng, J. & Xu, J. Protein structure alignment beyond spatial proximity. Scientific reports 3 (2013).
    • (2013) Scientific Reports , vol.3
    • Wang, S.1    Ma, J.2    Peng, J.3    Xu, J.4
  • 69
    • 49949086495 scopus 로고    scopus 로고
    • The use of a conformational alphabet for fast alignment of protein structures
    • Zheng, W.-M. The use of a conformational alphabet for fast alignment of protein structures. Bioinformatics Research and Applications, 331-342 (2008).
    • (2008) Bioinformatics Research and Applications , pp. 331-342
    • Zheng, W.-M.1
  • 70
    • 27944488680 scopus 로고    scopus 로고
    • Accurate prediction of protein disordered regions by mining protein structure data
    • Cheng, J., Sweredoski, M. J. & Baldi, P. Accurate prediction of protein disordered regions by mining protein structure data. Data Min. Knowl. Disc. 11, 213-222 (2005).
    • (2005) Data Min. Knowl. Disc , vol.11 , pp. 213-222
    • Cheng, J.1    Sweredoski, M.J.2    Baldi, P.3
  • 72
    • 24044538903 scopus 로고    scopus 로고
    • IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content
    • Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433-3434 (2005).
    • (2005) Bioinformatics , vol.21 , pp. 3433-3434
    • Dosztányi, Z.1    Csizmok, V.2    Tompa, P.3    Simon, I.4
  • 73
    • 84863519768 scopus 로고    scopus 로고
    • A conditional neural fields model for protein threading
    • Ma, J., Peng, J., Wang, S. & Xu, J. A conditional neural fields model for protein threading. Bioinformatics 28, i59-i66 (2012).
    • (2012) Bioinformatics , vol.28 , pp. i59-i66
    • Ma, J.1    Peng, J.2    Wang, S.3    Xu, J.4
  • 74
    • 84879901270 scopus 로고    scopus 로고
    • Protein threading using context-specific alignment potential
    • Ma, J., Wang, S., Zhao, F. & Xu, J. Protein threading using context-specific alignment potential. Bioinformatics 29, i257-i265 (2013).
    • (2013) Bioinformatics , vol.29 , pp. i257-i265
    • Ma, J.1    Wang, S.2    Zhao, F.3    Xu, J.4
  • 75
    • 84897393474 scopus 로고    scopus 로고
    • MRFalign: Protein homology detection through alignment of Markov random fields
    • Ma, J., Wang, S., Wang, Z. & Xu, J.MRFalign: protein homology detection through alignment of Markov random fields. PLoS Comp. Biol. 10, e1003500 (2014).
    • (2014) PLoS Comp. Biol. , vol.10
    • Ma, J.1    Wang, S.2    Wang, Z.3    Xu, J.4
  • 76
    • 67650358909 scopus 로고    scopus 로고
    • QMEAN server for protein model quality estimation
    • Benkert, P., Künzli, M. & Schwede, T. QMEAN server for protein model quality estimation. Nucleic Acids Res., gkp322 (2009).
    • (2009) Nucleic Acids Res. , pp. gkp322
    • Benkert, P.1    Künzli, M.2    Schwede, T.3
  • 77
    • 84861977121 scopus 로고    scopus 로고
    • A position-specific distance-dependent statistical potential for protein structure and functional study
    • Zhao, F. & Xu, J. A position-specific distance-dependent statistical potential for protein structure and functional study. Structure 20, 1118-1126 (2012).
    • (2012) Structure , vol.20 , pp. 1118-1126
    • Zhao, F.1    Xu, J.2
  • 78
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Mathematical programming 45, 503-528 (1989).
    • (1989) Mathematical Programming , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 79
    • 38549097071 scopus 로고    scopus 로고
    • The universal protein resource (UniProt)
    • Consortium, U. The universal protein resource (UniProt). Nucleic Acids Res. 36, D190-D195 (2008).
    • (2008) Nucleic Acids Res. , vol.36 , pp. D190-D195
    • Consortium, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.