-
1
-
-
0035812694
-
Protein structure prediction and structural genomics
-
Baker, D. & Sali, A. Protein structure prediction and structural genomics. Science 294, 93-96 (2001).
-
(2001)
Science
, vol.294
, pp. 93-96
-
-
Baker, D.1
Sali, A.2
-
2
-
-
84869761071
-
The protein-folding problem, 50 years on
-
Dill, K. A. & MacCallum, J. L. The protein-folding problem, 50 years on. Science 338, 1042-1046 (2012).
-
(2012)
Science
, vol.338
, pp. 1042-1046
-
-
Dill, K.A.1
MacCallum, J.L.2
-
5
-
-
84860539715
-
Advances in structure-based drug design
-
Schaffhausen, J. Advances in structure-based drug design. Trends Pharmacol. Sci. 33, 223 (2012).
-
(2012)
Trends Pharmacol. Sci.
, vol.33
, pp. 223
-
-
Schaffhausen, J.1
-
6
-
-
0346799108
-
Prediction of protein function from protein sequence and structure
-
Whisstock, J. C. & Lesk, A. M. Prediction of protein function from protein sequence and structure. Q. Rev. Biophys. 36, 307-340 (2003).
-
(2003)
Q. Rev. Biophys.
, vol.36
, pp. 307-340
-
-
Whisstock, J.C.1
Lesk, A.M.2
-
7
-
-
36448988254
-
Predicting protein function from sequence and structure
-
Lee, D., Redfern, O. & Orengo, C. Predicting protein function from sequence and structure. Nat. Rev. Mol. Cell Biol. 8, 995-1005 (2007).
-
(2007)
Nat. Rev. Mol. Cell Biol.
, vol.8
, pp. 995-1005
-
-
Lee, D.1
Redfern, O.2
Orengo, C.3
-
8
-
-
84874663959
-
A large-scale evaluation of computational protein function prediction
-
Radivojac, P. et al. A large-scale evaluation of computational protein function prediction. Nat. Methods 10, 221-227 (2013).
-
(2013)
Nat. Methods
, vol.10
, pp. 221-227
-
-
Radivojac, P.1
-
9
-
-
3242885293
-
The predictprotein server
-
Rost, B., Yachdav, G. & Liu, J. The predictprotein server. Nucleic Acids Res. 32, W321-W326 (2004).
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. W321-W326
-
-
Rost, B.1
Yachdav, G.2
Liu, J.3
-
10
-
-
13444266488
-
A simple and fast secondary structure prediction method using hidden neural networks
-
Lin, K., Simossis, V. A., Taylor, W. R. & Heringa, J. A simple and fast secondary structure prediction method using hidden neural networks. Bioinformatics 21, 152-159 (2005).
-
(2005)
Bioinformatics
, vol.21
, pp. 152-159
-
-
Lin, K.1
Simossis, V.A.2
Taylor, W.R.3
Heringa, J.4
-
11
-
-
71549152918
-
Machine learning techniques for protein secondary structure prediction: An overview and evaluation
-
Yoo, P. D., Zhou, B. B. & Zomaya, A. Y. Machine learning techniques for protein secondary structure prediction: an overview and evaluation. Current Bioinformatics 3, 74-86 (2008).
-
(2008)
Current Bioinformatics
, vol.3
, pp. 74-86
-
-
Yoo, P.D.1
Zhou, B.B.2
Zomaya, A.Y.3
-
12
-
-
83855162773
-
SPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
-
Faraggi, E., Zhang, T., Yang, Y., Kurgan, L. & Zhou, Y. SPINE X: improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J. Comp. Chem. 33, 259-267 (2012).
-
(2012)
J. Comp. Chem.
, vol.33
, pp. 259-267
-
-
Faraggi, E.1
Zhang, T.2
Yang, Y.3
Kurgan, L.4
Zhou, Y.5
-
13
-
-
76549252207
-
The structure of proteins: Two hydrogen-bonded helical configurations of the polypeptide chain
-
Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. USA 37, 205-211 (1951).
-
(1951)
Proc. Natl. Acad. Sci. USA
, vol.37
, pp. 205-211
-
-
Pauling, L.1
Corey, R.B.2
Branson, H.R.3
-
14
-
-
0020997912
-
Dictionary of protein secondary structure: Pattern recognition of hydrogen - bonded and geometrical features
-
Kabsch, W. & Sander, C. Dictionary of protein secondary structure: pattern recognition of hydrogen - bonded and geometrical features. Biopolymers 22, 2577-2637 (1983).
-
(1983)
Biopolymers
, vol.22
, pp. 2577-2637
-
-
Kabsch, W.1
Sander, C.2
-
15
-
-
0035005366
-
Preorganized secondary structure as an important determinant of fast protein folding
-
Myers, J. K. & Oas, T. G. Preorganized secondary structure as an important determinant of fast protein folding. Nat. Struct. Mol. Biol. 8, 552-558 (2001).
-
(2001)
Nat. Struct. Mol. Biol.
, vol.8
, pp. 552-558
-
-
Myers, J.K.1
Oas, T.G.2
-
16
-
-
84864448769
-
Template-based protein structure modeling using the RaptorX web server
-
Källberg, M. et al. Template-based protein structure modeling using the RaptorX web server. Nature protocols 7, 1511-1522 (2012).
-
(2012)
Nature Protocols
, vol.7
, pp. 1511-1522
-
-
Källberg, M.1
-
17
-
-
39449115394
-
I-TASSER server for protein 3D structure prediction
-
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9, 40 (2008).
-
(2008)
BMC Bioinformatics
, vol.9
, pp. 40
-
-
Zhang, Y.1
-
18
-
-
0031585984
-
Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions
-
Simons, K. T., Kooperberg, C., Huang, E. & Baker, D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and Bayesian scoring functions. J. Mol. Biol. 268, 209-225 (1997).
-
(1997)
J. Mol. Biol.
, Issue.268
, pp. 209-225
-
-
Simons, K.T.1
Kooperberg, C.2
Huang, E.3
Baker, D.4
-
19
-
-
0000268209
-
Protein secondary structure prediction with a neural network
-
Holley, L. H. & Karplus, M. Protein secondary structure prediction with a neural network. Proc. Natl. Acad. Sci. USA 86, 152-156 (1989).
-
(1989)
Proc. Natl. Acad. Sci. USA
, vol.86
, pp. 152-156
-
-
Holley, L.H.1
Karplus, M.2
-
20
-
-
0023803244
-
Predicting the secondary structure of globular proteins using neural network models
-
Qian, N. & Sejnowski, T. J. Predicting the secondary structure of globular proteins using neural network models. J. Mol. Biol. 202, 865-884 (1988).
-
(1988)
J. Mol. Biol.
, vol.202
, pp. 865-884
-
-
Qian, N.1
Sejnowski, T.J.2
-
21
-
-
0025334980
-
Improvements in protein secondary structure prediction by an enhanced neural network
-
Kneller, D., Cohen, F. & Langridge, R. Improvements in protein secondary structure prediction by an enhanced neural network. J. Mol. Biol. 214, 171-182 (1990).
-
(1990)
J. Mol. Biol.
, vol.214
, pp. 171-182
-
-
Kneller, D.1
Cohen, F.2
Langridge, R.3
-
22
-
-
0027174134
-
Prediction of protein secondary structure by the hidden Markov model
-
Asai, K., Hayamizu, S. & Handa, K. I. Prediction of protein secondary structure by the hidden Markov model. Comput. Appl. Biosci. 9, 141-146 (1993).
-
(1993)
Comput. Appl. Biosci
, vol.9
, pp. 141-146
-
-
Asai, K.1
Hayamizu, S.2
Handa, K.I.3
-
23
-
-
0027291015
-
Prediction of protein secondary structure at better than 70% accuracy
-
Rost, B. & Sander, C. Prediction of protein secondary structure at better than 70% accuracy. J. Mol. Biol. 232, 584-599 (1993).
-
(1993)
J. Mol. Biol.
, vol.232
, pp. 584-599
-
-
Rost, B.1
Sander, C.2
-
24
-
-
0033578684
-
Protein secondary structure prediction based on position-specific scoring matrices
-
Jones, D. T. Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol. 292, 195-202 (1999).
-
(1999)
J. Mol. Biol.
, vol.292
, pp. 195-202
-
-
Jones, D.T.1
-
25
-
-
0034047548
-
Bayesian segmentation of protein secondary structure
-
Schmidler, S. C., Liu, J. S. & Brutlag, D. L. Bayesian segmentation of protein secondary structure. J. Comput. Biol. 7, 233-248 (2000).
-
(2000)
J. Comput. Biol.
, vol.7
, pp. 233-248
-
-
Schmidler, S.C.1
Liu, J.S.2
Brutlag, D.L.3
-
26
-
-
0036568279
-
Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
-
Pollastri, G., Przybylski, D., Rost, B. & Baldi, P. Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins: Struct. Funct. Bioinform. 47, 228-235 (2002).
-
(2002)
Proteins: Struct. Funct. Bioinform
, vol.47
, pp. 228-235
-
-
Pollastri, G.1
Przybylski, D.2
Rost, B.3
Baldi, P.4
-
27
-
-
0141593924
-
Protein secondary structure prediction based on an improved support vector machines approach
-
Kim, H. & Park, H. Protein secondary structure prediction based on an improved support vector machines approach. Protein Eng. 16, 553-560 (2003).
-
(2003)
Protein Eng.
, vol.16
, pp. 553-560
-
-
Kim, H.1
Park, H.2
-
28
-
-
0141738785
-
Secondary structure prediction with support vector machines
-
Ward, J. J., McGuffin, L. J., Buxton, B. F. & Jones, D. T. Secondary structure prediction with support vector machines. Bioinformatics 19, 1650-1655 (2003).
-
(2003)
Bioinformatics
, vol.19
, pp. 1650-1655
-
-
Ward, J.J.1
McGuffin, L.J.2
Buxton, B.F.3
Jones, D.T.4
-
29
-
-
14344264952
-
A graphical model for protein secondary structure prediction
-
Banff, Alberta, Canada, July 4-8, 2004. ACM International Conference Proceeding Series 69, ACM 2004
-
Chu, W., Ghahramani, Z. & Wild, D. L. A graphical model for protein secondary structure prediction. Proceedings of the Twenty-first International Conference (ICML 2004), Banff, Alberta, Canada, July 4-8, 2004. ACM International Conference Proceeding Series, ACM 2004, 21 (2004).
-
(2004)
Proceedings of the Twenty-first International Conference (ICML 2004)
, vol.69
-
-
Chu, W.1
Ghahramani, Z.2
Wild, D.L.3
-
30
-
-
1542346418
-
A novel method for protein secondary structure prediction using dual - layer SVM and profiles
-
Guo, J., Chen, H., Sun, Z. & Lin, Y. A novel method for protein secondary structure prediction using dual - layer SVM and profiles. Proteins: Struct. Funct. Bioinform. 54, 738-743 (2004).
-
(2004)
Proteins: Struct. Funct. Bioinform
, vol.54
, pp. 738-743
-
-
Guo, J.1
Chen, H.2
Sun, Z.3
Lin, Y.4
-
31
-
-
33745259286
-
Protein secondary structure prediction for a single-sequence using hidden semi-Markov models
-
Aydin, Z., Altunbasak, Y. & Borodovsky, M. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models. BMC Bioinformatics 7, 178 (2006).
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 178
-
-
Aydin, Z.1
Altunbasak, Y.2
Borodovsky, M.3
-
33
-
-
80053030893
-
Protein 8 - class secondary structure prediction using conditional neural fields
-
Wang, Z., Zhao, F., Peng, J. & Xu, J. Protein 8 - class secondary structure prediction using conditional neural fields. Proteomics 11, 3786-3792 (2011).
-
(2011)
Proteomics
, vol.11
, pp. 3786-3792
-
-
Wang, Z.1
Zhao, F.2
Peng, J.3
Xu, J.4
-
34
-
-
84907487648
-
SSpro/ACCpro 5: Almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity
-
Magnan, C. N. & Baldi, P. SSpro/ACCpro 5: almost perfect prediction of protein secondary structure and relative solvent accessibility using profiles, machine learning and structural similarity. Bioinformatics 30, 2592-2597 (2014).
-
(2014)
Bioinformatics
, vol.30
, pp. 2592-2597
-
-
Magnan, C.N.1
Baldi, P.2
-
35
-
-
0023660653
-
Prediction of protein secondary structure and active sites using the alignment of homologous sequences
-
Zvelebil, M. J., Barton, G. J., Taylor, W. R. & Sternberg, M. J. Prediction of protein secondary structure and active sites using the alignment of homologous sequences. J. Mol. Biol. 195, 957-961 (1987).
-
(1987)
J. Mol. Biol.
, vol.195
, pp. 957-961
-
-
Zvelebil, M.J.1
Barton, G.J.2
Taylor, W.R.3
Sternberg, M.J.4
-
36
-
-
84961763568
-
Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction
-
Zhou, J. & Troyanskaya, O. Deep Supervised and Convolutional Generative Stochastic Network for Protein Secondary Structure Prediction. Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014. JMLR Proceedings 32, 745-753 (2014).
-
(2014)
Proceedings of the 31th International Conference on Machine Learning, ICML 2014, Beijing, China, 21-26 June 2014. JMLR Proceedings
, vol.32
, pp. 745-753
-
-
Zhou, J.1
Troyanskaya, O.2
-
37
-
-
0033369033
-
Exploiting the past and the future in protein secondary structure prediction
-
Baldi, P., Brunak, S., Frasconi, P., Soda, G. & Pollastri, G. Exploiting the past and the future in protein secondary structure prediction. Bioinformatics 15, 937-946 (1999).
-
(1999)
Bioinformatics
, vol.15
, pp. 937-946
-
-
Baldi, P.1
Brunak, S.2
Frasconi, P.3
Soda, G.4
Pollastri, G.5
-
38
-
-
0024234855
-
CLUSTAL: A package for performing multiple sequence alignment on a microcomputer
-
Higgins, D. G. & Sharp, P. M. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73, 237-244 (1988).
-
(1988)
Gene
, vol.73
, pp. 237-244
-
-
Higgins, D.G.1
Sharp, P.M.2
-
39
-
-
3042666256
-
MUSCLE: Multiple sequence alignment with high accuracy and high throughput
-
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792-1797 (2004).
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. 1792-1797
-
-
Edgar, R.C.1
-
40
-
-
0027968068
-
CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice
-
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice.Nucleic Acids Res. 22, 4673-4680 (1994).
-
(1994)
Nucleic Acids Res.
, vol.22
, pp. 4673-4680
-
-
Thompson, J.D.1
Higgins, D.G.2
Gibson, T.J.3
-
41
-
-
0030801002
-
Gapped BLAST and PSI-BLAST: A new generation of protein database search programs
-
Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389-3402 (1997).
-
(1997)
Nucleic Acids Res.
, vol.25
, pp. 3389-3402
-
-
Altschul, S.F.1
-
42
-
-
84859459624
-
Hidden-unit conditional random fields
-
Maaten, L., Welling, M. & Saul, L. K. Hidden-unit conditional random fields. Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011. JMLR Proceedings 15, 479-488 (2011).
-
(2011)
Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2011, Fort Lauderdale, USA, April 11-13, 2011. JMLR Proceedings
, vol.15
, pp. 479-488
-
-
Maaten, L.1
Welling, M.2
Saul, L.K.3
-
43
-
-
0035957531
-
A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
-
Hua, S. & Sun, Z. A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach. J. Mol. Biol. 308, 397-407 (2001).
-
(2001)
J. Mol. Biol.
, vol.308
, pp. 397-407
-
-
Hua, S.1
Sun, Z.2
-
44
-
-
84923265167
-
A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction
-
Spencer, M., Eickholt, J. & Cheng, J. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 12, 103-112 (2015).
-
(2015)
IEEE/ACM Trans. Comput. Biol. Bioinform
, vol.12
, pp. 103-112
-
-
Spencer, M.1
Eickholt, J.2
Cheng, J.3
-
45
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504-507 (2006).
-
(2006)
Science
, vol.313
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
46
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
Hinton, G. Training products of experts by minimizing contrastive divergence. Neural Comput. 14, 1771-1800 (2002).
-
(2002)
Neural Comput
, vol.14
, pp. 1771-1800
-
-
Hinton, G.1
-
47
-
-
84979854249
-
JPred4: A protein secondary structure prediction server
-
Drozdetskiy, A., Cole, C., Procter, J. & Barton, G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Res., gkv332 (2015).
-
(2015)
Nucleic Acids Res.
, pp. gkv332
-
-
Drozdetskiy, A.1
Cole, C.2
Procter, J.3
Barton, G.J.4
-
48
-
-
0032420333
-
JPred: A consensus secondary structure prediction server
-
Cuff, J. A., Clamp, M. E., Siddiqui, A. S., Finlay, M. & Barton, G. J. JPred: a consensus secondary structure prediction server. Bioinformatics 14, 892-893 (1998).
-
(1998)
Bioinformatics
, vol.14
, pp. 892-893
-
-
Cuff, J.A.1
Clamp, M.E.2
Siddiqui, A.S.3
Finlay, M.4
Barton, G.J.5
-
49
-
-
0033081846
-
A modified definition of Sov, a segment - based measure for protein secondary structure prediction assessment
-
Zemla, A., Venclovas, Č., Fidelis, K. & Rost, B. A modified definition of Sov, a segment - based measure for protein secondary structure prediction assessment. Proteins: Struct. Funct. Bioinform. 34, 220-223 (1999).
-
(1999)
Proteins: Struct. Funct. Bioinform
, vol.34
, pp. 220-223
-
-
Zemla, A.1
Venclovas, Č.2
Fidelis, K.3
Rost, B.4
-
50
-
-
84863373241
-
Conditional neural fields
-
Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada. Curran Associates, Inc. 2009
-
Peng, J., Bo, L. & Xu, J. Conditional neural fields. Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada. Curran Associates, Inc. 2009, 1419-1427 (2009).
-
(2009)
Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009
, pp. 1419-1427
-
-
Peng, J.1
Bo, L.2
Xu, J.3
-
51
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
Lee, H., Grosse, R., Ranganath, R. & Ng, A. Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009. ACM International Conference Proceeding Series 382, ACM 2009, 609-616 (2009).
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18, 2009. ACM International Conference Proceeding Series 382, ACM 2009
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
52
-
-
0142192295
-
Conditional random fields: Probabilistic models for segmenting and labeling sequence data
-
Lafferty, J., McCallum, A. & Pereira, F. C. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001), Williams College, Williamstown, MA, USA, June 28 - July 1, 2001. Morgan Kaufmann 2001 (2001).
-
(2001)
Proceedings of the Eighteenth International Conference on Machine Learning (ICML 2001), Williams College, Williamstown, MA, USA, June 28 - July 1, 2001. Morgan Kaufmann 2001
-
-
Lafferty, J.1
McCallum, A.2
Pereira, F.C.3
-
53
-
-
0043180474
-
PISCES: A protein sequence culling server
-
Wang, G. & Dunbrack, R. L. PISCES: a protein sequence culling server. Bioinformatics 19, 1589-1591 (2003).
-
(2003)
Bioinformatics
, vol.19
, pp. 1589-1591
-
-
Wang, G.1
Dunbrack, R.L.2
-
54
-
-
84892964425
-
Assessment of the assessment: Evaluation of the model quality estimates in CASP10
-
Kryshtafovych, A. et al. Assessment of the assessment: evaluation of the model quality estimates in CASP10. Proteins: Struct. Funct. Bioinform. 82, 112-126 (2014).
-
(2014)
Proteins: Struct. Funct. Bioinform
, vol.82
, pp. 112-126
-
-
Kryshtafovych, A.1
-
55
-
-
84893021599
-
Critical assessment of methods of protein structure prediction (CASP) - round x
-
Moult, J., Fidelis, K., Kryshtafovych, A., Schwede, T. & Tramontano, A. Critical assessment of methods of protein structure prediction (CASP) - round x. Proteins: Struct. Funct. Bioinform. 82, 1-6 (2014).
-
(2014)
Proteins: Struct. Funct. Bioinform
, vol.82
, pp. 1-6
-
-
Moult, J.1
Fidelis, K.2
Kryshtafovych, A.3
Schwede, T.4
Tramontano, A.5
-
56
-
-
84941039390
-
CATH: Comprehensive structural and functional annotations for genome sequences
-
Sillitoe, I. et al. CATH: comprehensive structural and functional annotations for genome sequences. Nucleic Acids Res. 43, D376-D381 (2015).
-
(2015)
Nucleic Acids Res.
, vol.43
, pp. D376-D381
-
-
Sillitoe, I.1
-
57
-
-
84891783706
-
SCOP2 prototype: A new approach to protein structure mining
-
Andreeva, A., Howorth, D., Chothia, C., Kulesha, E. & Murzin, A. G. SCOP2 prototype: a new approach to protein structure mining. Nucleic Acids Res. 42, D310-D314 (2014).
-
(2014)
Nucleic Acids Res.
, vol.42
, pp. D310-D314
-
-
Andreeva, A.1
Howorth, D.2
Chothia, C.3
Kulesha, E.4
Murzin, A.G.5
-
58
-
-
0035914053
-
Protein secondary structure: Category assignment and predictability
-
Andersen, C. A., Bohr, H. & Brunak, S. Protein secondary structure: category assignment and predictability. FEBS Lett. 507, 6-10 (2001).
-
(2001)
FEBS Lett.
, vol.507
, pp. 6-10
-
-
Andersen, C.A.1
Bohr, H.2
Brunak, S.3
-
59
-
-
1442335006
-
Length preferences and periodicity in β - strands. Antiparallel edge β - sheets are more likely to finish in non - hydrogen bonded rings
-
Penel, S., Morrison, R. G., Dobson, P. D., Mortishire - Smith, R. J. & Doig, A. J.Length preferences and periodicity in β - strands. Antiparallel edge β - sheets are more likely to finish in non - hydrogen bonded rings. Protein Eng. 16, 957-961 (2003).
-
(2003)
Protein Eng.
, vol.16
, pp. 957-961
-
-
Penel, S.1
Morrison, R.G.2
Dobson, P.D.3
Mortishire - Smith, R.J.4
Doig, A.J.5
-
60
-
-
85043116988
-
Shallow parsing with conditional random fields. HLT-NAACL 2003
-
Sha, F. & Pereira, F. Shallow parsing with conditional random fields. HLT-NAACL 2003, Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, May 27 - June 1, Edmonton, Canada, 134-141 (2003).
-
(2003)
Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics, May 27 - June 1, Edmonton, Canada
, pp. 134-141
-
-
Sha, F.1
Pereira, F.2
-
61
-
-
33845593205
-
Hidden conditional random fields for gesture recognition
-
Wang, S. B., Quattoni, A., Morency, L., Demirdjian, D. & Darrell, T. Hidden conditional random fields for gesture recognition. 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), 17-22 June 2006, New York, NY, USA. IEEE Computer Society 2006 2, 1521-1527 (2006).
-
(2006)
2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), 17-22 June 2006, New York, NY, USA. IEEE Computer Society 2006
, vol.2
, pp. 1521-1527
-
-
Wang, S.B.1
Quattoni, A.2
Morency, L.3
Demirdjian, D.4
Darrell, T.5
-
62
-
-
84898948585
-
Max-margin Markov networks
-
MIT Press 2004
-
Taskar, B., Guestrin, C. & Koller, D. Max-margin Markov networks. Advances in Neural Information Processing Systems 16 [Neural Information Processing Systems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada]. MIT Press 2004 16, 25 (2004).
-
(2004)
Advances in Neural Information Processing Systems 16 [Neural Information Processing Systems, NIPS 2003, December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada]
, vol.16
, pp. 25
-
-
Taskar, B.1
Guestrin, C.2
Koller, D.3
-
63
-
-
84862184719
-
Sann: Solvent accessibility prediction of proteins by nearest neighbor method
-
Joo, K., Lee, S. J. & Lee, J. Sann: Solvent accessibility prediction of proteins by nearest neighbor method. Proteins: Struct. Funct. Bioinform. 80, 1791-1797 (2012).
-
(2012)
Proteins: Struct. Funct. Bioinform
, vol.80
, pp. 1791-1797
-
-
Joo, K.1
Lee, S.J.2
Lee, J.3
-
64
-
-
61449123967
-
Improving the prediction accuracy of residue solvent accessibility and real - value backbone torsion angles of proteins by guided - learning through a two - layer neural network
-
Faraggi, E., Xue, B. & Zhou, Y. Improving the prediction accuracy of residue solvent accessibility and real - value backbone torsion angles of proteins by guided - learning through a two - layer neural network. Proteins: Struct. Funct. Bioinform. 74, 847-856 (2009).
-
(2009)
Proteins: Struct. Funct. Bioinform
, vol.74
, pp. 847-856
-
-
Faraggi, E.1
Xue, B.2
Zhou, Y.3
-
65
-
-
10844226577
-
Predicting absolute contact numbers of native protein structure from amino acid sequence
-
Kinjo, A. R., Horimoto, K. & Nishikawa, K. Predicting absolute contact numbers of native protein structure from amino acid sequence. Proteins: Struct. Funct. Bioinform. 58, 158-165 (2005).
-
(2005)
Proteins: Struct. Funct. Bioinform
, vol.58
, pp. 158-165
-
-
Kinjo, A.R.1
Horimoto, K.2
Nishikawa, K.3
-
66
-
-
44049099330
-
CLePAPS: Fast pair alignment of protein structures based on conformational letters
-
Wang, S. & Zheng, W.-M. CLePAPS: fast pair alignment of protein structures based on conformational letters. J. Bioinf. Comput. Biol. 6, 347-366 (2008).
-
(2008)
J. Bioinf. Comput. Biol.
, vol.6
, pp. 347-366
-
-
Wang, S.1
Zheng, W.-M.2
-
67
-
-
80052720106
-
Fast multiple alignment of protein structures using conformational letter blocks
-
Wang, S. & Zheng, W.-M. Fast multiple alignment of protein structures using conformational letter blocks. Open Bioinformatics Journal 3, 69-83 (2009).
-
(2009)
Open Bioinformatics Journal
, vol.3
, pp. 69-83
-
-
Wang, S.1
Zheng, W.-M.2
-
68
-
-
84875164107
-
Protein structure alignment beyond spatial proximity
-
Wang, S., Ma, J., Peng, J. & Xu, J. Protein structure alignment beyond spatial proximity. Scientific reports 3 (2013).
-
(2013)
Scientific Reports
, vol.3
-
-
Wang, S.1
Ma, J.2
Peng, J.3
Xu, J.4
-
69
-
-
49949086495
-
The use of a conformational alphabet for fast alignment of protein structures
-
Zheng, W.-M. The use of a conformational alphabet for fast alignment of protein structures. Bioinformatics Research and Applications, 331-342 (2008).
-
(2008)
Bioinformatics Research and Applications
, pp. 331-342
-
-
Zheng, W.-M.1
-
70
-
-
27944488680
-
Accurate prediction of protein disordered regions by mining protein structure data
-
Cheng, J., Sweredoski, M. J. & Baldi, P. Accurate prediction of protein disordered regions by mining protein structure data. Data Min. Knowl. Disc. 11, 213-222 (2005).
-
(2005)
Data Min. Knowl. Disc
, vol.11
, pp. 213-222
-
-
Cheng, J.1
Sweredoski, M.J.2
Baldi, P.3
-
71
-
-
3242891318
-
The DISOPRED server for the prediction of protein disorder
-
Ward, J. J., McGuffin, L. J., Bryson, K., Buxton, B. F. & Jones, D. T. The DISOPRED server for the prediction of protein disorder. Bioinformatics 20, 2138-2139 (2004).
-
(2004)
Bioinformatics
, vol.20
, pp. 2138-2139
-
-
Ward, J.J.1
McGuffin, L.J.2
Bryson, K.3
Buxton, B.F.4
Jones, D.T.5
-
72
-
-
24044538903
-
IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content
-
Dosztányi, Z., Csizmok, V., Tompa, P. & Simon, I. IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21, 3433-3434 (2005).
-
(2005)
Bioinformatics
, vol.21
, pp. 3433-3434
-
-
Dosztányi, Z.1
Csizmok, V.2
Tompa, P.3
Simon, I.4
-
73
-
-
84863519768
-
A conditional neural fields model for protein threading
-
Ma, J., Peng, J., Wang, S. & Xu, J. A conditional neural fields model for protein threading. Bioinformatics 28, i59-i66 (2012).
-
(2012)
Bioinformatics
, vol.28
, pp. i59-i66
-
-
Ma, J.1
Peng, J.2
Wang, S.3
Xu, J.4
-
74
-
-
84879901270
-
Protein threading using context-specific alignment potential
-
Ma, J., Wang, S., Zhao, F. & Xu, J. Protein threading using context-specific alignment potential. Bioinformatics 29, i257-i265 (2013).
-
(2013)
Bioinformatics
, vol.29
, pp. i257-i265
-
-
Ma, J.1
Wang, S.2
Zhao, F.3
Xu, J.4
-
75
-
-
84897393474
-
MRFalign: Protein homology detection through alignment of Markov random fields
-
Ma, J., Wang, S., Wang, Z. & Xu, J.MRFalign: protein homology detection through alignment of Markov random fields. PLoS Comp. Biol. 10, e1003500 (2014).
-
(2014)
PLoS Comp. Biol.
, vol.10
-
-
Ma, J.1
Wang, S.2
Wang, Z.3
Xu, J.4
-
77
-
-
84861977121
-
A position-specific distance-dependent statistical potential for protein structure and functional study
-
Zhao, F. & Xu, J. A position-specific distance-dependent statistical potential for protein structure and functional study. Structure 20, 1118-1126 (2012).
-
(2012)
Structure
, vol.20
, pp. 1118-1126
-
-
Zhao, F.1
Xu, J.2
-
78
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
Liu, D. C. & Nocedal, J. On the limited memory BFGS method for large scale optimization. Mathematical programming 45, 503-528 (1989).
-
(1989)
Mathematical Programming
, vol.45
, pp. 503-528
-
-
Liu, D.C.1
Nocedal, J.2
-
79
-
-
38549097071
-
The universal protein resource (UniProt)
-
Consortium, U. The universal protein resource (UniProt). Nucleic Acids Res. 36, D190-D195 (2008).
-
(2008)
Nucleic Acids Res.
, vol.36
, pp. D190-D195
-
-
Consortium, U.1
|