메뉴 건너뛰기




Volumn 16, Issue 8, 2015, Pages 17315-17330

DeepCNF-D: Predicting protein order/disorder regions by weighted deep convolutional neural fields

Author keywords

Conditional neural field; Deep convolutional neural network; Deep learning; Intrinsically disordered proteins; Machine learning; Prediction of disordered regions

Indexed keywords

AMINO ACID; CASPASE 10; CASPASE 9; INTRINSICALLY DISORDERED PROTEIN; PROTEIN;

EID: 84938318602     PISSN: 16616596     EISSN: 14220067     Source Type: Journal    
DOI: 10.3390/ijms160817315     Document Type: Article
Times cited : (64)

References (50)
  • 1
    • 49749185732 scopus 로고
    • Optical rotation and viscosity of native and denatured proteins. X. Further studies on optical rotatory dispersion
    • Jirgensons, B. Optical rotation and viscosity of native and denatured proteins. X. Further studies on optical rotatory dispersion. Arch. Biochem. Biophys. 1958, 74, 57-69.
    • (1958) Arch. Biochem. Biophys , vol.74 , pp. 57-69
    • Jirgensons, B.1
  • 2
    • 84902160274 scopus 로고    scopus 로고
    • Intrinsically disordered proteins and intrinsically disordered protein regions
    • Oldfield, C. J.; Dunker, A. K. Intrinsically disordered proteins and intrinsically disordered protein regions. Annu. Rev. Biochem. 2014, 83, 553-584.
    • (2014) Annu. Rev. Biochem , vol.83 , pp. 553-584
    • Oldfield, C.J.1    Dunker, A.K.2
  • 4
    • 84879177976 scopus 로고    scopus 로고
    • Describing intrinsically disordered proteins at atomic resolution by NMR
    • Jensen, M. R.; Ruigrok, R. W.; Blackledge, M. Describing intrinsically disordered proteins at atomic resolution by NMR. Curr. Opin. Struct. Biol. 2013, 23, 426-435.
    • (2013) Curr. Opin. Struct. Biol , vol.23 , pp. 426-435
    • Jensen, M.R.1    Ruigrok, R.W.2    Blackledge, M.3
  • 5
    • 68749093787 scopus 로고    scopus 로고
    • Predicting intrinsic disorder in proteins: An overview
    • He, B.; Wang, K.; Liu, Y.; Xue, B.; Uversky, V. N.; Dunker, A. K. Predicting intrinsic disorder in proteins: An overview. Cell Res. 2009, 19, 929-949.
    • (2009) Cell Res , vol.19 , pp. 929-949
    • He, B.1    Wang, K.2    Liu, Y.3    Xue, B.4    Uversky, V.N.5    Dunker, A.K.6
  • 6
    • 24044538903 scopus 로고    scopus 로고
    • IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content
    • Dosztányi, Z.; Csizmok, V.; Tompa, P.; Simon, I. IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 2005, 21, 3433-3434.
    • (2005) Bioinformatics , vol.21 , pp. 3433-3434
    • Dosztányi, Z.1    Csizmok, V.2    Tompa, P.3    Simon, I.4
  • 7
    • 84925251625 scopus 로고    scopus 로고
    • DISOPRED3: Precise disordered region predictions with annotated protein-binding activity
    • Jones, D. T.; Cozzetto, D. DISOPRED3: Precise disordered region predictions with annotated protein-binding activity. Bioinformatics 2015, 31, 857-863.
    • (2015) Bioinformatics , vol.31 , pp. 857-863
    • Jones, D.T.1    Cozzetto, D.2
  • 8
    • 84855184716 scopus 로고    scopus 로고
    • SPINE-D: Accurate prediction of short and long disordered regions by a single neural-network based method
    • Zhang, T.; Faraggi, E.; Xue, B.; Dunker, A. K.; Uversky, V. N.; Zhou, Y. SPINE-D: Accurate prediction of short and long disordered regions by a single neural-network based method. J. Biomol. Struct. Dyn. 2012, 29, 799-813.
    • (2012) J. Biomol. Struct. Dyn , vol.29 , pp. 799-813
    • Zhang, T.1    Faraggi, E.2    Xue, B.3    Dunker, A.K.4    Uversky, V.N.5    Zhou, Y.6
  • 9
    • 84874545393 scopus 로고    scopus 로고
    • DNdisorder: Predicting protein disorder using boosting and deep networks
    • Eickholt, J.; Cheng, J. DNdisorder: Predicting protein disorder using boosting and deep networks. BMC Bioinform. 2013, 14, 88.
    • (2013) BMC Bioinform , vol.14 , pp. 88
    • Eickholt, J.1    Cheng, J.2
  • 10
    • 34547588389 scopus 로고    scopus 로고
    • PrDOS: Prediction of disordered protein regions from amino acid sequence
    • Ishida, T.; Kinoshita, K. PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucleic Acids Res. 2007, 35, W460-W464.
    • (2007) Nucleic Acids Res , vol.35 , pp. W460-W464
    • Ishida, T.1    Kinoshita, K.2
  • 12
    • 34548567232 scopus 로고    scopus 로고
    • POODLE-L: A two-level SVM prediction system for reliably predicting long disordered regions
    • Hirose, S.; Shimizu, K.; Kanai, S.; Kuroda, Y.; Noguchi, T. POODLE-L: A two-level SVM prediction system for reliably predicting long disordered regions. Bioinformatics 2007, 23, 2046-2053.
    • (2007) Bioinformatics , vol.23 , pp. 2046-2053
    • Hirose, S.1    Shimizu, K.2    Kanai, S.3    Kuroda, Y.4    Noguchi, T.5
  • 13
    • 84861332327 scopus 로고    scopus 로고
    • MetaDisorder: A meta-server for the prediction of intrinsic disorder in proteins
    • Kozlowski, L. P.; Bujnicki, J. M. MetaDisorder: A meta-server for the prediction of intrinsic disorder in proteins. BMC Bioinform. 2012, 13, 111.
    • (2012) BMC Bioinform , vol.13 , pp. 111
    • Kozlowski, L.P.1    Bujnicki, J.M.2
  • 14
    • 82655175485 scopus 로고    scopus 로고
    • A comprehensive overview of computational protein disorder prediction methods
    • Deng, X.; Eickholt, J.; Cheng, J. A comprehensive overview of computational protein disorder prediction methods. Mol. BioSyst. 2012, 8, 114-121.
    • (2012) Mol. BioSyst , vol.8 , pp. 114-121
    • Deng, X.1    Eickholt, J.2    Cheng, J.3
  • 16
    • 44349150513 scopus 로고    scopus 로고
    • OnD-CRF: Predicting order and disorder in proteins conditional random fields
    • Wang, L.; Sauer, U. H. OnD-CRF: Predicting order and disorder in proteins conditional random fields. Bioinformatics 2008, 24, 1401-1402.
    • (2008) Bioinformatics , vol.24 , pp. 1401-1402
    • Wang, L.1    Sauer, U.H.2
  • 18
    • 84874033484 scopus 로고    scopus 로고
    • On the encoding of proteins for disordered regions prediction
    • Becker, J.; Maes, F.; Wehenkel, L. On the encoding of proteins for disordered regions prediction. PLoS ONE 2013, 8, e82252.
    • (2013) PLoS ONE , vol.8
    • Becker, J.1    Maes, F.2    Wehenkel, L.3
  • 20
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • 2009, ACM, Montreal, QC, Canada, 14-18 June
    • Lee, H.; Grosse, R.; Ranganath, R.; Ng, A. Y. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine Learning, 2009, ACM, Montreal, QC, Canada, 14-18 June 2009; pp. 609-616.
    • (2009) Proceedings of the 26th Annual International Conference on Machine Learning , pp. 609-616
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 21
    • 80053030893 scopus 로고    scopus 로고
    • Protein 8-class secondary structure prediction using conditional neural fields
    • Wang, Z.; Zhao, F.; Peng, J.; Xu, J. Protein 8-class secondary structure prediction using conditional neural fields. Proteomics 2011, 11, 3786-3792.
    • (2011) Proteomics , vol.11 , pp. 3786-3792
    • Wang, Z.1    Zhao, F.2    Peng, J.3    Xu, J.4
  • 22
    • 84938356212 scopus 로고    scopus 로고
    • AcconPred: Predicting solvent accessibility and contact number simultaneously by a multitask learning framework under the conditional neural fields model
    • Ma, J.; Wang, S. AcconPred: Predicting solvent accessibility and contact number simultaneously by a multitask learning framework under the conditional neural fields model. BioMed Res. Int. 2015, doi: 10. 1155/2015/678764.
    • (2015) BioMed Res. Int
    • Ma, J.1    Wang, S.2
  • 23
    • 27944488680 scopus 로고    scopus 로고
    • Accurate prediction of protein disordered regions by mining protein structure data
    • Cheng, J.; Sweredoski, M. J.; Baldi, P. Accurate prediction of protein disordered regions by mining protein structure data. Data Min. Knowl. Discov. 2005, 11, 213-222.
    • (2005) Data Min. Knowl. Discov , vol.11 , pp. 213-222
    • Cheng, J.1    Sweredoski, M.J.2    Baldi, P.3
  • 24
    • 84865129593 scopus 로고    scopus 로고
    • MobiDB: A comprehensive database of intrinsic protein disorder annotations
    • Di Domenico, T.; Walsh, I.; Martin, A. J.; Tosatto, S. C. MobiDB: A comprehensive database of intrinsic protein disorder annotations. Bioinformatics 2012, 28, 2080-2081.
    • (2012) Bioinformatics , vol.28 , pp. 2080-2081
    • Di Domenico, T.1    Walsh, I.2    Martin, A.J.3    Tosatto, S.C.4
  • 26
    • 83855162773 scopus 로고    scopus 로고
    • SPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles
    • Faraggi, E.; Zhang, T.; Yang, Y.; Kurgan, L.; Zhou, Y. SPINE X: Improving protein secondary structure prediction by multistep learning coupled with prediction of solvent accessible surface area and backbone torsion angles. J. Comput. Chem. 2012, 33, 259-267.
    • (2012) J. Comput. Chem , vol.33 , pp. 259-267
    • Faraggi, E.1    Zhang, T.2    Yang, Y.3    Kurgan, L.4    Zhou, Y.5
  • 27
    • 26944454497 scopus 로고    scopus 로고
    • ROC graphs: Notes and practical considerations for researchers
    • Fawcett, T. ROC graphs: Notes and practical considerations for researchers. Mach. Learn. 2004, 31, 1-38.
    • (2004) Mach. Learn , vol.31 , pp. 1-38
    • Fawcett, T.1
  • 28
    • 84555190723 scopus 로고    scopus 로고
    • Weighted conditional random fields for supervised interpatient heartbeat classification
    • De Lannoy, G.; François, D.; Delbeke, J.; Verleysen, M. Weighted conditional random fields for supervised interpatient heartbeat classification. IEEE Trans. Biomed. Eng. 2012, 59, 241-247.
    • (2012) IEEE Trans. Biomed. Eng , vol.59 , pp. 241-247
    • De Lannoy, G.1    François, D.2    Delbeke, J.3    Verleysen, M.4
  • 29
    • 0043180474 scopus 로고    scopus 로고
    • PISCES: A protein sequence culling server
    • Wang, G.; Dunbrack, R. L. PISCES: A protein sequence culling server. Bioinformatics 2003, 19, 1589-1591.
    • (2003) Bioinformatics , vol.19 , pp. 1589-1591
    • Wang, G.1    Dunbrack, R.L.2
  • 30
    • 84938368294 scopus 로고    scopus 로고
    • (accessed on 25 March 2015)
    • The Source Code of Method DeepCNF-D. Available online: http://ttic. uchicago. edu/~wangsheng/DeepCNF_D_package_v1. 00. tar. gz (accessed on 25 March 2015).
    • The Source Code of Method DeepCNF-D
  • 31
    • 1542358787 scopus 로고    scopus 로고
    • Prediction and functional analysis of native disorder in proteins from the three kingdoms of life
    • Ward, J. J.; Sodhi, J. S.; McGuffin, L. J.; Buxton, B. F.; Jones, D. T. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J. Mol. Biol. 2004, 337, 635-645.
    • (2004) J. Mol. Biol , vol.337 , pp. 635-645
    • Ward, J.J.1    Sodhi, J.S.2    McGuffin, L.J.3    Buxton, B.F.4    Jones, D.T.5
  • 32
    • 44049099330 scopus 로고    scopus 로고
    • CLePAPS: Fast pair alignment of protein structures based on conformational letters
    • Wang, S.; Zheng, W.-M. CLePAPS: Fast pair alignment of protein structures based on conformational letters. J. Bioinform. Computat. Biol. 2008, 6, 347-366.
    • (2008) J. Bioinform. Computat. Biol , vol.6 , pp. 347-366
    • Wang, S.1    Zheng, W.-M.2
  • 33
    • 80052720106 scopus 로고    scopus 로고
    • Fast multiple alignment of protein structures using conformational letter blocks
    • Wang, S.; Zheng, W.-M. Fast multiple alignment of protein structures using conformational letter blocks. Open Bioinform. J. 2009, 3, 69-83.
    • (2009) Open Bioinform. J , vol.3 , pp. 69-83
    • Wang, S.1    Zheng, W.-M.2
  • 34
    • 80052693672 scopus 로고    scopus 로고
    • Alignment of distantly related protein structures: Algorithm, bound and implications to homology modeling
    • Wang, S.; Peng, J.; Xu, J. Alignment of distantly related protein structures: Algorithm, bound and implications to homology modeling. Bioinformatics 2011, 27, 2537-2545.
    • (2011) Bioinformatics , vol.27 , pp. 2537-2545
    • Wang, S.1    Peng, J.2    Xu, J.3
  • 35
    • 84875164107 scopus 로고    scopus 로고
    • Protein structure alignment beyond spatial proximity
    • Wang, S.; Ma, J.; Peng, J.; Xu, J. Protein structure alignment beyond spatial proximity. Sci. Rep. 2013, 3, doi: 10. 1038/srep01448.
    • (2013) Sci. Rep , vol.3
    • Wang, S.1    Ma, J.2    Peng, J.3    Xu, J.4
  • 36
    • 84896279116 scopus 로고    scopus 로고
    • Algorithms, applications, and challenges of protein structure alignment
    • Ma, J.; Wang, S. Algorithms, applications, and challenges of protein structure alignment. Adv. Protein Chem. Struct. Biol. 2014, 94, 121-175.
    • (2014) Adv. Protein Chem. Struct. Biol , vol.94 , pp. 121-175
    • Ma, J.1    Wang, S.2
  • 40
    • 34548750953 scopus 로고    scopus 로고
    • Natively unstructured regions in proteins identified from contact predictions
    • Schlessinger, A.; Punta, M.; Rost, B. Natively unstructured regions in proteins identified from contact predictions. Bioinformatics 2007, 23, 2376-2384.
    • (2007) Bioinformatics , vol.23 , pp. 2376-2384
    • Schlessinger, A.1    Punta, M.2    Rost, B.3
  • 42
    • 33646887390 scopus 로고
    • On the limited memory BFGS method for large scale optimization
    • Liu, D. C.; Nocedal, J. On the limited memory BFGS method for large scale optimization. Math. Program. 1989, 45, 503-528.
    • (1989) Math. Program , vol.45 , pp. 503-528
    • Liu, D.C.1    Nocedal, J.2
  • 43
    • 0035789525 scopus 로고    scopus 로고
    • Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks
    • Meiler, J.; Müller, M.; Zeidler, A.; Schmäschke, F. Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks. Mol. Model. Ann. 2001, 7, 360-369.
    • (2001) Mol. Model. Ann , vol.7 , pp. 360-369
    • Meiler, J.1    Müller, M.2    Zeidler, A.3    Schmäschke, F.4
  • 44
    • 50049099447 scopus 로고    scopus 로고
    • Position-Specific residue preference features around the ends of helices and strands and a novel strategy for the prediction of secondary structures
    • Duan, M.; Huang, M.; Ma, C.; Li, L.; Zhou, Y. Position-Specific residue preference features around the ends of helices and strands and a novel strategy for the prediction of secondary structures. Protein Sci. 2008, 17, 1505-1512.
    • (2008) Protein Sci , vol.17 , pp. 1505-1512
    • Duan, M.1    Huang, M.2    Ma, C.3    Li, L.4    Zhou, Y.5
  • 45
    • 33746239564 scopus 로고    scopus 로고
    • Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences
    • Tan, Y. H.; Huang, H.; Kihara, D. Statistical potential-based amino acid similarity matrices for aligning distantly related protein sequences. Proteins Struct. Funct. Bioinform. 2006, 64, 587-600.
    • (2006) Proteins Struct. Funct. Bioinform , vol.64 , pp. 587-600
    • Tan, Y.H.1    Huang, H.2    Kihara, D.3
  • 46
    • 84879901270 scopus 로고    scopus 로고
    • Protein threading using context-specific alignment potential
    • Ma, J.; Wang, S.; Zhao, F.; Xu, J. Protein threading using context-specific alignment potential. Bioinformatics 2013, 29, i257-i265.
    • (2013) Bioinformatics , vol.29 , pp. i257-i265
    • Ma, J.1    Wang, S.2    Zhao, F.3    Xu, J.4
  • 47
    • 84863519768 scopus 로고    scopus 로고
    • A conditional neural fields model for protein threading
    • Ma, J.; Peng, J.; Wang, S.; Xu, J. A conditional neural fields model for protein threading. Bioinformatics 2012, 28, i59-i66.
    • (2012) Bioinformatics , vol.28 , pp. i59-i66
    • Ma, J.1    Peng, J.2    Wang, S.3    Xu, J.4
  • 48
    • 84897393474 scopus 로고    scopus 로고
    • MRFalign: Protein homology detection through alignment of markov random fields
    • Ma, J.; Wang, S.; Wang, Z.; Xu, J. MRFalign: Protein homology detection through alignment of markov random fields. PLoS Comput. Biol. 2014, 10, e1003500.
    • (2014) PLoS Comput. Biol , vol.10
    • Ma, J.1    Wang, S.2    Wang, Z.3    Xu, J.4
  • 50
    • 23144452044 scopus 로고    scopus 로고
    • The HHpred interactive server for protein homology detection and structure prediction
    • Söding, J.; Biegert, A.; Lupas, A. N. The HHpred interactive server for protein homology detection and structure prediction. Nucleic Acids Res. 2005, 33 (Suppl. 2), W244-W248.
    • (2005) Nucleic Acids Res , vol.33 , pp. W244-W248
    • Söding, J.1    Biegert, A.2    Lupas, A.N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.