-
1
-
-
85086756939
-
An integration framework on cloud for cyber physical social systems big data
-
10.1109/TCC.2015.2511766
-
Kuang, L., Yang, L.T., Liao, Y., An integration framework on cloud for cyber physical social systems big data. IEEE Trans. Cloud Comput., 2015 10.1109/TCC.2015.2511766.
-
(2015)
IEEE Trans. Cloud Comput.
-
-
Kuang, L.1
Yang, L.T.2
Liao, Y.3
-
2
-
-
84881061591
-
Communication energy modeling and optimization through joint packet size analysis of BSN and wifi networks
-
Li, Y., Qi, X., Keally, M., Ren, Z., Zhou, G., Xiao, D., Deng, S., Communication energy modeling and optimization through joint packet size analysis of BSN and wifi networks. IEEE Trans. Parallel Distrib. Syst. 24:9 (2013), 1741–1751.
-
(2013)
IEEE Trans. Parallel Distrib. Syst.
, vol.24
, Issue.9
, pp. 1741-1751
-
-
Li, Y.1
Qi, X.2
Keally, M.3
Ren, Z.4
Zhou, G.5
Xiao, D.6
Deng, S.7
-
3
-
-
84900800509
-
Data-intensive applications, challenges, techniques and technologies: a survey on big data
-
2014
-
Chen, C.L.P., Zhang, C., Data-intensive applications, challenges, techniques and technologies: a survey on big data. Inf. Sci. 275 (2014), 314–347 2014.
-
(2014)
Inf. Sci.
, vol.275
, pp. 314-347
-
-
Chen, C.L.P.1
Zhang, C.2
-
4
-
-
84890419941
-
Data mining with big data
-
Wu, X., Zhu, X., Wu, G.-Q., Ding, W., Data mining with big data. IEEE Trans. Knowl. Data Eng. 26:1 (2014), 97–107.
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.1
, pp. 97-107
-
-
Wu, X.1
Zhu, X.2
Wu, G.-Q.3
Ding, W.4
-
5
-
-
84943350772
-
Social big data: recent achievements and new challenges
-
Orgaz, G.B., Jung, J.J., Camacho, D., Social big data: recent achievements and new challenges. Inf. Fusion 28 (2016), 45–59.
-
(2016)
Inf. Fusion
, vol.28
, pp. 45-59
-
-
Orgaz, G.B.1
Jung, J.J.2
Camacho, D.3
-
6
-
-
84939242660
-
A framework for composition and enforcement of privacy-aware and context-driven authorization mechanism for multimedia big data
-
Samuel, A., Sarfraz, M.I., Haseeb, H., Basalamah, S., Ghafoor, A., A framework for composition and enforcement of privacy-aware and context-driven authorization mechanism for multimedia big data. IEEE Trans. Multimedia 17:9 (2015), 1484–1494.
-
(2015)
IEEE Trans. Multimedia
, vol.17
, Issue.9
, pp. 1484-1494
-
-
Samuel, A.1
Sarfraz, M.I.2
Haseeb, H.3
Basalamah, S.4
Ghafoor, A.5
-
8
-
-
84923318381
-
Big data deep learning: challenges and perspectives
-
Chen, X., Lin, X., Big data deep learning: challenges and perspectives. IEEE Access 2 (2014), 514–525.
-
(2014)
IEEE Access
, vol.2
, pp. 514-525
-
-
Chen, X.1
Lin, X.2
-
9
-
-
84879854889
-
Representation learning: a review and new perspectives
-
Bengio, Y., Courville, A., Vincent, P., Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1798–1828.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1798-1828
-
-
Bengio, Y.1
Courville, A.2
Vincent, P.3
-
11
-
-
84910651844
-
Deep learning in neural networks: an overview
-
Schmidhuber, J., Deep learning in neural networks: an overview. Neural Netw. 61 (2015), 85–117.
-
(2015)
Neural Netw.
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
12
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
13
-
-
70049092228
-
Large-scale deep unsupervised learning using graphics processors
-
ACM
-
Raina, R., Madhavan, A., Ng, A., Large-scale deep unsupervised learning using graphics processors. Proceedings of International Conference on Machine Learning, 2009, 873 C880 ACM.
-
(2009)
Proceedings of International Conference on Machine Learning
, pp. 873 C880
-
-
Raina, R.1
Madhavan, A.2
Ng, A.3
-
14
-
-
85033443272
-
-
Efficient processing of deep neual networks: a tutoria and survey
-
V. Sze, Y. Chen, T. Yang, J. Emer, Efficient processing of deep neual networks: a tutoria and survey, 2017, arXiv:1703.09039.
-
(2017)
-
-
Sze, V.1
Chen, Y.2
Yang, T.3
Emer, J.4
-
15
-
-
85007203138
-
Application of deep learning to compuer vision: a comprehensive study
-
IEEE
-
Islam, S.M.S., Rahman, S., Rahman, M.M., Dey, E.K., Shoyaib, M., Application of deep learning to compuer vision: a comprehensive study. Proceedings of International Conference on Informatics, Electronics and Vision, 2016, 592–597 IEEE.
-
(2016)
Proceedings of International Conference on Informatics, Electronics and Vision
, pp. 592-597
-
-
Islam, S.M.S.1
Rahman, S.2
Rahman, M.M.3
Dey, E.K.4
Shoyaib, M.5
-
16
-
-
84879847917
-
Deep hierarchies in the primate visual cortex: what can we learn for computer vision
-
Kruger, N., Janssen, P., Kalkan, S., Lappe, M., Leonardis, A., Piater, J., Rodriguez-Sanchez, A.J., Wiskott, L., Deep hierarchies in the primate visual cortex: what can we learn for computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1847–1871.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1847-1871
-
-
Kruger, N.1
Janssen, P.2
Kalkan, S.3
Lappe, M.4
Leonardis, A.5
Piater, J.6
Rodriguez-Sanchez, A.J.7
Wiskott, L.8
-
17
-
-
84890526837
-
New types of deep neual network learning for speech recognition and related applications: an overview
-
IEEE
-
Deng, L., Hinton, G., Kingsbury, B., New types of deep neual network learning for speech recognition and related applications: an overview. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, 26–31 IEEE.
-
(2013)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 26-31
-
-
Deng, L.1
Hinton, G.2
Kingsbury, B.3
-
18
-
-
84929327770
-
Multitask learning of deep neural networks for low-resource speech recognition
-
Chen, D., Mak, B.K., Multitask learning of deep neural networks for low-resource speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 23:7 (2015), 1172–1183.
-
(2015)
IEEE/ACM Trans. Audio Speech Lang. Process.
, vol.23
, Issue.7
, pp. 1172-1183
-
-
Chen, D.1
Mak, B.K.2
-
19
-
-
85017176110
-
Deep learning-based document modeling for personality detection from text
-
Majumder, N., Poria, S., Gelbukh, A., Cambria, E., Deep learning-based document modeling for personality detection from text. IEEE Intell. Syst. 32:2 (2017), 74–79.
-
(2017)
IEEE Intell. Syst.
, vol.32
, Issue.2
, pp. 74-79
-
-
Majumder, N.1
Poria, S.2
Gelbukh, A.3
Cambria, E.4
-
20
-
-
84962428739
-
Training word embeddings for deep learning in biomedical text mining tasks
-
IEEE
-
Jiang, Z., Li, L., Huang, D., Lin, L., Training word embeddings for deep learning in biomedical text mining tasks. Proceedings of IEEE International Conference on Bioinformatics and Biomedicine, 2015, 625–628 IEEE.
-
(2015)
Proceedings of IEEE International Conference on Bioinformatics and Biomedicine
, pp. 625-628
-
-
Jiang, Z.1
Li, L.2
Huang, D.3
Lin, L.4
-
21
-
-
85010521555
-
Spark based distributed deep learning framework for big data applications
-
IEEE
-
Khumoyun, A., Cui, Y., Hanku, L., Spark based distributed deep learning framework for big data applications. Proceedings of International Conference on Information Science and Communications Technologies, 2016, 1–5 IEEE.
-
(2016)
Proceedings of International Conference on Information Science and Communications Technologies
, pp. 1-5
-
-
Khumoyun, A.1
Cui, Y.2
Hanku, L.3
-
22
-
-
84971373627
-
Mobile big data analytics using deep learning and apache spark
-
Alsheikh, M.A., Niyato, D., Lin, S., Tan, H., Han, Z., Mobile big data analytics using deep learning and apache spark. IEEE Netw. 30:3 (2016), 22–29.
-
(2016)
IEEE Netw.
, vol.30
, Issue.3
, pp. 22-29
-
-
Alsheikh, M.A.1
Niyato, D.2
Lin, S.3
Tan, H.4
Han, Z.5
-
23
-
-
84987947860
-
Big data and deep learning
-
IEEE
-
Wilamowski, B.M., Wu, B., Korniak, J., Big data and deep learning. Proceedings of IEEE Jubilee International Conference on Intelligent Engineering Systems, 2016, 11–16 IEEE.
-
(2016)
Proceedings of IEEE Jubilee International Conference on Intelligent Engineering Systems
, pp. 11-16
-
-
Wilamowski, B.M.1
Wu, B.2
Korniak, J.3
-
24
-
-
84890482429
-
Extracting deep bottleneck features using stacked auto-encoders
-
IEEE
-
Gehring, J., Miao, Y., Metze, F., Waibel, A., Extracting deep bottleneck features using stacked auto-encoders. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, 26–31 IEEE.
-
(2013)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 26-31
-
-
Gehring, J.1
Miao, Y.2
Metze, F.3
Waibel, A.4
-
25
-
-
84988876898
-
Learning cascaded deep auto-encoder networks for face alignment
-
Weng, R., Lu, J., Tan, Y., Zhou, J., Learning cascaded deep auto-encoder networks for face alignment. IEEE Trans. Multimedia 18:10 (2016), 2066–2078.
-
(2016)
IEEE Trans. Multimedia
, vol.18
, Issue.10
, pp. 2066-2078
-
-
Weng, R.1
Lu, J.2
Tan, Y.3
Zhou, J.4
-
26
-
-
84957055585
-
Unseen noise estimation using separable deep auto encoder for speech enhancement
-
Sun, M., Zhang, X., Hmme, H.V., Zheng, T.F., Unseen noise estimation using separable deep auto encoder for speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 24:1 (2016), 93–104.
-
(2016)
IEEE/ACM Trans. Audio Speech Lang. Process.
, vol.24
, Issue.1
, pp. 93-104
-
-
Sun, M.1
Zhang, X.2
Hmme, H.V.3
Zheng, T.F.4
-
27
-
-
84860644702
-
Measuring invariances in deep networks
-
MIT
-
Goodfellow, I., Le, Q., Saxe, A., Ng, A., Measuring invariances in deep networks. Proceeding of Neural Information and Processing System, 2009, 646–654 MIT.
-
(2009)
Proceeding of Neural Information and Processing System
, pp. 646-654
-
-
Goodfellow, I.1
Le, Q.2
Saxe, A.3
Ng, A.4
-
28
-
-
85033471385
-
-
Sparse autoencoder, CS294A Lecture notes 72
-
A. Ng, Sparse autoencoder, CS294A Lecture notes 72(2011) 1–19.
-
(2011)
, pp. 1-19
-
-
Ng, A.1
-
29
-
-
33745805403
-
-
A fast learning algorithm for deep belief nets, Neural Comput. 18(7)
-
G.E. Hinton, S. Osindero, Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18(7) 1527–1554.
-
-
-
Hinton, G.E.1
Osindero, S.2
Teh, Y.-W.3
-
30
-
-
84859473821
-
Learning algorithms for the classification restricted boltzmann machine
-
Larochelle, H., Mandel, M., Pascanu, R., Bengio, Y., Learning algorithms for the classification restricted boltzmann machine. J. Mach. Learn. Res. 13 (2012), 643–669.
-
(2012)
J. Mach. Learn. Res.
, vol.13
, pp. 643-669
-
-
Larochelle, H.1
Mandel, M.2
Pascanu, R.3
Bengio, Y.4
-
31
-
-
34547983260
-
Restricted boltzmann machines for collaborative filtering
-
ACM
-
Salakhutdinov, R., Mnih, A., Hinton, G., Restricted boltzmann machines for collaborative filtering. Proceedings of International Conference on Machine learning, 2007, 791–798 ACM.
-
(2007)
Proceedings of International Conference on Machine learning
, pp. 791-798
-
-
Salakhutdinov, R.1
Mnih, A.2
Hinton, G.3
-
32
-
-
84867682492
-
Improved learning of gaussian-bernoulli restricted boltzmann machines
-
MIT
-
Cho, K., Ilin, A., Raiko, T., Improved learning of gaussian-bernoulli restricted boltzmann machines. Proceedings of International Conference in Artificial Neural Networks, 2011, 10C17 MIT.
-
(2011)
Proceedings of International Conference in Artificial Neural Networks
, pp. 10C17
-
-
Cho, K.1
Ilin, A.2
Raiko, T.3
-
33
-
-
84983164503
-
Classification of hyperspectral image based on deep belief networks
-
IEEE
-
Li, T., Zhang, J., Zhang, Y., Classification of hyperspectral image based on deep belief networks. Proceedings of IEEE International Conference on Image Processing, 2014, 5132–5136 IEEE.
-
(2014)
Proceedings of IEEE International Conference on Image Processing
, pp. 5132-5136
-
-
Li, T.1
Zhang, J.2
Zhang, Y.3
-
34
-
-
84922895198
-
An improved bilinear deep belief network algorithm for image classification
-
IEEE
-
Niu, J., Bu, X., Li, Z., Wang, Y., An improved bilinear deep belief network algorithm for image classification. Proceedings of International Conference on Computational Intelligence and Security, 2014, 189–192 IEEE.
-
(2014)
Proceedings of International Conference on Computational Intelligence and Security
, pp. 189-192
-
-
Niu, J.1
Bu, X.2
Li, Z.3
Wang, Y.4
-
35
-
-
84055211743
-
Acoustic modeling using deep belief networks
-
Mohamed, A., Dahl, G.E., Hinton, G., Acoustic modeling using deep belief networks. IEEE Trans. Audio Speech Lang. Process. 20:1 (2012), 14–22.
-
(2012)
IEEE Trans. Audio Speech Lang. Process.
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.1
Dahl, G.E.2
Hinton, G.3
-
36
-
-
84872300403
-
Deep belief networks based voice activity detection
-
Zhang, X., Wu, J., Deep belief networks based voice activity detection. IEEE Trans. Audio Speech Lang. Process. 21:4 (2013), 697–710.
-
(2013)
IEEE Trans. Audio Speech Lang. Process.
, vol.21
, Issue.4
, pp. 697-710
-
-
Zhang, X.1
Wu, J.2
-
37
-
-
84907500988
-
Deep architecture for traffic flow prediction: deep belief networks with multitask learning
-
Huang, W., Song, G., Hong, H., Xie, K., Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. Syst. 15:5 (2014), 2191–2201.
-
(2014)
IEEE Trans. Intell. Transp. Syst.
, vol.15
, Issue.5
, pp. 2191-2201
-
-
Huang, W.1
Song, G.2
Hong, H.3
Xie, K.4
-
38
-
-
84898070747
-
Application of deep belief networks for natural language understanding
-
Sarikaya, R., Hinton, G.E., Deoras, A., Application of deep belief networks for natural language understanding. IEEE/ACM Trans. Audio Speech Lang. Process. 22:4 (2014), 778–784.
-
(2014)
IEEE/ACM Trans. Audio Speech Lang. Process.
, vol.22
, Issue.4
, pp. 778-784
-
-
Sarikaya, R.1
Hinton, G.E.2
Deoras, A.3
-
39
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
IEEE
-
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Li, F., Large-scale video classification with convolutional neural networks. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014, 1725–1732 IEEE.
-
(2014)
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Li, F.6
-
40
-
-
84992121956
-
Convolutional neural networks for large-scale remote-sensing image classification
-
Maggiori, E., Tarabalka, Y., Charpiat, G., Alliez, P., Convolutional neural networks for large-scale remote-sensing image classification. IEEE Trans. Geosci. Remote Sens. 55:2 (2017), 645–657.
-
(2017)
IEEE Trans. Geosci. Remote Sens.
, vol.55
, Issue.2
, pp. 645-657
-
-
Maggiori, E.1
Tarabalka, Y.2
Charpiat, G.3
Alliez, P.4
-
41
-
-
85007475072
-
Deep convolutional neural networks for predominant instrument recognition in polyphonic music
-
Han, Y., Kim, J., Lee, K., Deep convolutional neural networks for predominant instrument recognition in polyphonic music. IEEE/ACM Trans. Audio Speech Lang. Process. 25:1 (2017), 208–221.
-
(2017)
IEEE/ACM Trans. Audio Speech Lang. Process.
, vol.25
, Issue.1
, pp. 208-221
-
-
Han, Y.1
Kim, J.2
Lee, K.3
-
42
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
MIT
-
Krizhevsky, A., Sutskever, I., Hinton, G.E., Imagenet classification with deep convolutional neural networks. Proceedings of Advances in Neural Information Processing Systems, 2012, 1097–1105 MIT.
-
(2012)
Proceedings of Advances in Neural Information Processing Systems
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
43
-
-
85033444449
-
-
Very deep convolutional networks for large-scale image recognition
-
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014, arXiv:1409.1556.
-
(2014)
-
-
Simonyan, K.1
Zisserman, A.2
-
44
-
-
85033434077
-
-
Deep learning and its applications to machine health monitoring: a survey
-
R. Zhao, R. Yan, Z. Chen, K. Mao, P. Wang, R.X. Gao, Deep learning and its applications to machine health monitoring: a survey, 2016, arXiv:1612.07640.
-
(2016)
-
-
Zhao, R.1
Yan, R.2
Chen, Z.3
Mao, K.4
Wang, P.5
Gao, R.X.6
-
45
-
-
85033447461
-
-
A convolutional neural network for modeling sentences
-
N. Kalchbrenner, E. Grefenstette, P. Blunsom, A convolutional neural network for modeling sentences, 2014, arXiv:1404.2188.
-
(2014)
-
-
Kalchbrenner, N.1
Grefenstette, E.2
Blunsom, P.3
-
46
-
-
85016064378
-
A multichannel convolutional neural network for cross-language dialog state tracking
-
IEEE
-
Shi, H., Ushio, T., Endo, M., Yamagami, K., Horii, N., A multichannel convolutional neural network for cross-language dialog state tracking. Proceedings of IEEE Spoken Language Technology Workshop, 2016, 559–564 IEEE.
-
(2016)
Proceedings of IEEE Spoken Language Technology Workshop
, pp. 559-564
-
-
Shi, H.1
Ushio, T.2
Endo, M.3
Yamagami, K.4
Horii, N.5
-
47
-
-
84867605836
-
Applying convolutional neural networks concepts to gybrid NN-HMM model for speech recognition
-
IEEE
-
Abdel-Hamid, O., Mohamed, A., Jiang, H., Penn, G., Applying convolutional neural networks concepts to gybrid NN-HMM model for speech recognition. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2012, 4277–4280 IEEE.
-
(2012)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 4277-4280
-
-
Abdel-Hamid, O.1
Mohamed, A.2
Jiang, H.3
Penn, G.4
-
48
-
-
84991384259
-
Very deep convolutional neural networks for noise robust speech recognition
-
Qian, Y., Bi, M., Tan, T., Yu, K., Very deep convolutional neural networks for noise robust speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 24:12 (2016), 2263–2276.
-
(2016)
IEEE/ACM Trans. Audio Speech Lang. Process.
, vol.24
, Issue.12
, pp. 2263-2276
-
-
Qian, Y.1
Bi, M.2
Tan, T.3
Yu, K.4
-
49
-
-
84911473441
-
Convolutional neural networks for speech recognition
-
Abdel-Hamid, O., Mohamed, A., Jiang, H., Deng, L., Penn, G., Yu, D., Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22:10 (2014), 1533–1545.
-
(2014)
IEEE/ACM Trans. Audio Speech Lang. Process.
, vol.22
, Issue.10
, pp. 1533-1545
-
-
Abdel-Hamid, O.1
Mohamed, A.2
Jiang, H.3
Deng, L.4
Penn, G.5
Yu, D.6
-
50
-
-
84901999583
-
Convolutional neural networks for distant speech recognition
-
Swietojanski, P., Ghoshal, A., Renals, S., Convolutional neural networks for distant speech recognition. IEEE Signal Process. Lett. 21:9 (2014), 1120–1124.
-
(2014)
IEEE Signal Process. Lett.
, vol.21
, Issue.9
, pp. 1120-1124
-
-
Swietojanski, P.1
Ghoshal, A.2
Renals, S.3
-
51
-
-
0031573117
-
Long short-term memory
-
Hochreiter, S., Schmidhuber, J., Long short-term memory. Neural Comput. 9:8 (1997), 1725–1780.
-
(1997)
Neural Comput.
, vol.9
, Issue.8
, pp. 1725-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
52
-
-
0034293152
-
Learning to torget: continual prediction with istm
-
Gers, F.A., Schmidhuber, J., Cummins, F., Learning to torget: continual prediction with istm. Neural Comput. 12:10 (2000), 2451–2471.
-
(2000)
Neural Comput.
, vol.12
, Issue.10
, pp. 2451-2471
-
-
Gers, F.A.1
Schmidhuber, J.2
Cummins, F.3
-
53
-
-
0041965934
-
Learning precise timing with istm recurrent networks
-
Gers, F.A., Schraudolph, N.N., Schmidhuber, J., Learning precise timing with istm recurrent networks. J. Mach. Learn. Res. 3 (2002), 115–143.
-
(2002)
J. Mach. Learn. Res.
, vol.3
, pp. 115-143
-
-
Gers, F.A.1
Schraudolph, N.N.2
Schmidhuber, J.3
-
54
-
-
85033473140
-
-
Empirical evaluation of gated recurrent neural networks on sequence modeling, 1412.3555.
-
J. Chung, C. Gulcehre, K. Cho, Y. Bengio, Empirical evaluation of gated recurrent neural networks on sequence modeling, 2014, 1412.3555.
-
(2014)
-
-
Chung, J.1
Gulcehre, C.2
Cho, K.3
Bengio, Y.4
-
55
-
-
84973392043
-
CUED-RNNLM-an open-source toolkit for efficient training and evaluation of recurrent neural network language models
-
IEEE
-
Chen, X., Liu, X., Qian, Y., Gales, M.J.F., Woodland, P.C., CUED-RNNLM-an open-source toolkit for efficient training and evaluation of recurrent neural network language models. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2016, IEEE, 6000–6004.
-
(2016)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 6000-6004
-
-
Chen, X.1
Liu, X.2
Qian, Y.3
Gales, M.J.F.4
Woodland, P.C.5
-
56
-
-
84986197827
-
Integrating prosodic information into recurrent neual network language model for speech recognition
-
IEEE
-
Fu, T., Han, Y., Li, X., Liu, Y., Wu, X., Integrating prosodic information into recurrent neual network language model for speech recognition. Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference, 2015, IEEE, 1194–1197.
-
(2015)
Proceedings of Asia-Pacific Signal and Information Processing Association Annual Summit and Conference
, pp. 1194-1197
-
-
Fu, T.1
Han, Y.2
Li, X.3
Liu, Y.4
Wu, X.5
-
57
-
-
84966551182
-
Recurrent neural network language model for english-indonesian machine translation: Experimental study
-
IEEE
-
Hermanto, A., Adji, T.B., Setiawan, N.A., Recurrent neural network language model for english-indonesian machine translation: Experimental study. Proceedings of International Conference on Science in Information Technology, 2015, IEEE, 132–136.
-
(2015)
Proceedings of International Conference on Science in Information Technology
, pp. 132-136
-
-
Hermanto, A.1
Adji, T.B.2
Setiawan, N.A.3
-
58
-
-
85008430487
-
End-to-end online writer identification with recurrent neural network
-
Zhang, X., Xie, G., Liu, C., Bengio, Y., End-to-end online writer identification with recurrent neural network. IEEE Trans. Hum. Mach. Syst. 47:2 (2017), 285–292.
-
(2017)
IEEE Trans. Hum. Mach. Syst.
, vol.47
, Issue.2
, pp. 285-292
-
-
Zhang, X.1
Xie, G.2
Liu, C.3
Bengio, Y.4
-
59
-
-
84949921270
-
Bayesian recurrent neural network for language modeling
-
Chien, J., Ku, Y., Bayesian recurrent neural network for language modeling. IEEE Trans. Neural Netw. Learn. Syst. 27:2 (2016), 361–374.
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.27
, Issue.2
, pp. 361-374
-
-
Chien, J.1
Ku, Y.2
-
60
-
-
84867614591
-
Scalable stacking and learning for building deep architectures
-
IEEE 2133 C2136
-
Deng, L., Yu, D., Platt, J., Scalable stacking and learning for building deep architectures. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2012, IEEE 2133 C2136.
-
(2012)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
-
-
Deng, L.1
Yu, D.2
Platt, J.3
-
61
-
-
84879301618
-
Tensor deep stacking networks
-
Hutchinson, B., Deng, L., Yu, D., Tensor deep stacking networks. IEEE Trans. Pattern Anal. Mach. Intell. 35:8 (2013), 1944–1957.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.8
, pp. 1944-1957
-
-
Hutchinson, B.1
Deng, L.2
Yu, D.3
-
62
-
-
84877760312
-
Large scale distributed deep networks
-
MIT
-
Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., Ranzato, M., Senior, A., Tucker, P., Yang, K., Le, Q.V., Ng, A.Y., Large scale distributed deep networks. Proceedings of Advances in Neural Information Processing Systems, 2012, MIT, 1223–1231.
-
(2012)
Proceedings of Advances in Neural Information Processing Systems
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
Ranzato, M.7
Senior, A.8
Tucker, P.9
Yang, K.10
Le, Q.V.11
Ng, A.Y.12
-
63
-
-
84890539009
-
Multilingual acoustic models using distributed deep neural networks
-
IEEE
-
Heigold, G., Vanhoucke, V., Senior, A., Nguyen, P., Ranzato, M., Devin, M., Dean, J., Multilingual acoustic models using distributed deep neural networks. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2013, IEEE, 8619–8623.
-
(2013)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 8619-8623
-
-
Heigold, G.1
Vanhoucke, V.2
Senior, A.3
Nguyen, P.4
Ranzato, M.5
Devin, M.6
Dean, J.7
-
64
-
-
84905252022
-
Asynchronous stochastic optimization for sequence training of deep neural networks
-
IEEE
-
Heigold, G., McDermott, E., Vanhoucke, V., Senior, A., Bacchiani, M., Asynchronous stochastic optimization for sequence training of deep neural networks. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2014, IEEE, 5587–5591.
-
(2014)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 5587-5591
-
-
Heigold, G.1
McDermott, E.2
Vanhoucke, V.3
Senior, A.4
Bacchiani, M.5
-
65
-
-
84867754966
-
Improving the speed of neural networks on CPUs
-
MIT
-
Vanhoucke, V., Senior, A., Mao, M., Improving the speed of neural networks on CPUs. Proceedings of Deep Learning and Unsupervised Feature Learning Workshop, 2011, MIT, 1–8.
-
(2011)
Proceedings of Deep Learning and Unsupervised Feature Learning Workshop
, pp. 1-8
-
-
Vanhoucke, V.1
Senior, A.2
Mao, M.3
-
66
-
-
0021518209
-
Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
-
Geman, S., Geman, D., Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6:6 (1984), 721–741.
-
(1984)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.6
, Issue.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
67
-
-
84937730674
-
Explaining the gibbs sampler
-
Casella, G., George, E., Explaining the gibbs sampler. Am. Stat. 46:3 (1992), 167–174.
-
(1992)
Am. Stat.
, vol.46
, Issue.3
, pp. 167-174
-
-
Casella, G.1
George, E.2
-
68
-
-
84894294885
-
Deep learning with COTS HPC systems
-
Coats, A., Huval, B., Wng, T., Wu, D., Wu, A., Deep learning with COTS HPC systems. J. Mach. Learn. Res. 28 (2013), 1337–1345.
-
(2013)
J. Mach. Learn. Res.
, vol.28
, pp. 1337-1345
-
-
Coats, A.1
Huval, B.2
Wng, T.3
Wu, D.4
Wu, A.5
-
69
-
-
84962921765
-
Optimizing FPGA-based accelerator design for deep convolutional neural networks
-
ACM
-
Zhang, C., Li, P., Sun, G., Guan, Y., Xiao, B., Cong, J., Optimizing FPGA-based accelerator design for deep convolutional neural networks. Proceedings of ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2015, ACM, 161–170.
-
(2015)
Proceedings of ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
, pp. 161-170
-
-
Zhang, C.1
Li, P.2
Sun, G.3
Guan, Y.4
Xiao, B.5
Cong, J.6
-
70
-
-
85013628943
-
DLAU: a scalable deep learning accelerator unit on FPGA
-
Wang, C., Gong, L., Yu, Q., Li, X., Xie, Y., Zhou, X., DLAU: a scalable deep learning accelerator unit on FPGA. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 36:3 (2017), 513–517.
-
(2017)
IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.
, vol.36
, Issue.3
, pp. 513-517
-
-
Wang, C.1
Gong, L.2
Yu, Q.3
Li, X.4
Xie, Y.5
Zhou, X.6
-
71
-
-
84898971588
-
Predicting parameters in deep learning
-
MIT
-
Denil, M., Shakibi, B., Dinh, L., Ranzato, M., de Freitas, N., Predicting parameters in deep learning. Proceedings of Advances in Neural Information Processing Systems, 2013, MIT, 2148–2156.
-
(2013)
Proceedings of Advances in Neural Information Processing Systems
, pp. 2148-2156
-
-
Denil, M.1
Shakibi, B.2
Dinh, L.3
Ranzato, M.4
de Freitas, N.5
-
72
-
-
84890454527
-
Low-rank matrix factorization for deep neural network training with high-dimensional output targets
-
IEEE Pp. 6655 C6659
-
Sainath, T.N., Kingsbury, B., Sindhwani, V., Arisoy, E., Ramabhadran, B., Low-rank matrix factorization for deep neural network training with high-dimensional output targets. Proceedings of IEEE International Conference of Acoustics, Speech, and Signal Processing, 2013, IEEE Pp. 6655 C6659.
-
(2013)
Proceedings of IEEE International Conference of Acoustics, Speech, and Signal Processing
-
-
Sainath, T.N.1
Kingsbury, B.2
Sindhwani, V.3
Arisoy, E.4
Ramabhadran, B.5
-
73
-
-
84906227589
-
Restructuring of deep neural network acoustic models with singular value decomposition
-
Springer Pp. 2365 C2369
-
Xue, J., Li, J., Gong, Y., Restructuring of deep neural network acoustic models with singular value decomposition. Proceedings of Conference of the International Speech Communication Association, 2013, Springer Pp. 2365 C2369.
-
(2013)
Proceedings of Conference of the International Speech Communication Association
-
-
Xue, J.1
Li, J.2
Gong, Y.3
-
74
-
-
84969930652
-
Compressing neural networks with the hashing trick
-
ACM Pp. 2285 C2294
-
Chen, W., Wilson, J.T., Tyree, S., Weinberger, K.Q., Chen, Y., Compressing neural networks with the hashing trick. Proceedings of International Conference on Machine Learning, 2015, ACM Pp. 2285 C2294.
-
(2015)
Proceedings of International Conference on Machine Learning
-
-
Chen, W.1
Wilson, J.T.2
Tyree, S.3
Weinberger, K.Q.4
Chen, Y.5
-
75
-
-
84965128773
-
Tensorizing neural netwroks
-
MIT
-
Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D., Tensorizing neural netwroks. Proceedings of Advances in Neural Information Processing Systems, 2015, MIT, 442–450.
-
(2015)
Proceedings of Advances in Neural Information Processing Systems
, pp. 442-450
-
-
Novikov, A.1
Podoprikhin, D.2
Osokin, A.3
Vetrov, D.4
-
76
-
-
85033454118
-
-
Speeding-up convolutional neural networks ssing fine-tuned CP-decomposition, 1412.6553.
-
V. Lebedev, Y. Ganin, M. Rakhuba, I. Oseledets, V. Lempitsky, Speeding-up convolutional neural networks ssing fine-tuned CP-decomposition, 2014, 1412.6553.
-
(2014)
-
-
Lebedev, V.1
Ganin, Y.2
Rakhuba, M.3
Oseledets, I.4
Lempitsky, V.5
-
77
-
-
80053437179
-
Multimodal deep learning
-
ACM
-
Ngiam, J., Khosla, A., Kim, M., Nam, J., Lee, H., Ng, A.Y., Multimodal deep learning. Proceedings of International Conference on Machine Learning, 2011, ACM, 689–696.
-
(2011)
Proceedings of International Conference on Machine Learning
, pp. 689-696
-
-
Ngiam, J.1
Khosla, A.2
Kim, M.3
Nam, J.4
Lee, H.5
Ng, A.Y.6
-
78
-
-
84877724347
-
Multimodal learning with deep boltzmann machines
-
MIT
-
Srivastava, N., Salakhutdinov, R., Multimodal learning with deep boltzmann machines. Proceedings of Advances in Neural Information Processing Systems, 2012, MIT, 2222–2230.
-
(2012)
Proceedings of Advances in Neural Information Processing Systems
, pp. 2222-2230
-
-
Srivastava, N.1
Salakhutdinov, R.2
-
79
-
-
84911409274
-
Multi-source deep learning for human pose estimation
-
IEEE
-
Ouyang, W., Chu, X., Wang, X., Multi-source deep learning for human pose estimation. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2014, IEEE, 2337–2344.
-
(2014)
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2337-2344
-
-
Ouyang, W.1
Chu, X.2
Wang, X.3
-
80
-
-
84937816872
-
Combining heterogeneous deep neural networks with conditional random fields for chinese dialogue act recognition
-
Zhou, Y., Hu, Q., Liu, J., Jia, Y., Combining heterogeneous deep neural networks with conditional random fields for chinese dialogue act recognition. Neurocomputing 168 (2015), 408–417.
-
(2015)
Neurocomputing
, vol.168
, pp. 408-417
-
-
Zhou, Y.1
Hu, Q.2
Liu, J.3
Jia, Y.4
-
81
-
-
84946222261
-
Heterogeneous feature selection with multi-modal deep neural networks and sparse group LASSO
-
Zhao, L., Hu, Q., Wang, W., Heterogeneous feature selection with multi-modal deep neural networks and sparse group LASSO. IEEE Trans. Multimedia 17:11 (2015), 1936–1948.
-
(2015)
IEEE Trans. Multimedia
, vol.17
, Issue.11
, pp. 1936-1948
-
-
Zhao, L.1
Hu, Q.2
Wang, W.3
-
82
-
-
84946215753
-
Large-margin multi-modal deep learning for RGB-d object recognition
-
Wang, A., Lu, J., Cai, J., Cham, T., Wang, G., Large-margin multi-modal deep learning for RGB-d object recognition. IEEE Trans. Multimedia 17:11 (2015), 1887–1898.
-
(2015)
IEEE Trans. Multimedia
, vol.17
, Issue.11
, pp. 1887-1898
-
-
Wang, A.1
Lu, J.2
Cai, J.3
Cham, T.4
Wang, G.5
-
83
-
-
84978743208
-
Moddrop: adaptive multi-modal gesture recognition
-
Neverova, N., Wolf, C., Taylor, G., Nebout, F., Moddrop: adaptive multi-modal gesture recognition. IEEE Trans. Pattern Anal. Mach. Intell. 38:8 (2016), 1692–1706.
-
(2016)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.38
, Issue.8
, pp. 1692-1706
-
-
Neverova, N.1
Wolf, C.2
Taylor, G.3
Nebout, F.4
-
84
-
-
84986296802
-
MDL-CW: a multimodal deep learning framework with crossweights
-
IEEE
-
Rastegar, S., Baghshah, M.S., Rabiee, H.R., Shojaee, S.M., MDL-CW: a multimodal deep learning framework with crossweights. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 2016, IEEE, 2601–2609.
-
(2016)
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition
, pp. 2601-2609
-
-
Rastegar, S.1
Baghshah, M.S.2
Rabiee, H.R.3
Shojaee, S.M.4
-
85
-
-
84962019916
-
Deep computation model for unsupervised feature learning on big data
-
Zhang, Q., Yang, L.T., Chen, Z., Deep computation model for unsupervised feature learning on big data. IEEE Trans. Serv. Comput. 9:1 (2016), 161–171.
-
(2016)
IEEE Trans. Serv. Comput.
, vol.9
, Issue.1
, pp. 161-171
-
-
Zhang, Q.1
Yang, L.T.2
Chen, Z.3
-
86
-
-
84963853667
-
Privacy preserving deep computation model on cloud for big data feature learning
-
Zhang, Q., Yang, L.T., Chen, Z., Privacy preserving deep computation model on cloud for big data feature learning. IEEE Trans. Comput. 65:5 (2016), 1351–1362.
-
(2016)
IEEE Trans. Comput.
, vol.65
, Issue.5
, pp. 1351-1362
-
-
Zhang, Q.1
Yang, L.T.2
Chen, Z.3
-
87
-
-
0030141870
-
Incremental backpropagation learning networks
-
Fu, L.M., Huang, H., Principe, J.C., Incremental backpropagation learning networks. IEEE Trans. Neural Netw. 7:3 (1996), 757–761.
-
(1996)
IEEE Trans. Neural Netw.
, vol.7
, Issue.3
, pp. 757-761
-
-
Fu, L.M.1
Huang, H.2
Principe, J.C.3
-
88
-
-
37849186543
-
Parameter incremental learning algorithm for neural networks
-
Wan, S., Banta, L.E., Parameter incremental learning algorithm for neural networks. IEEE Trans. Neural Netw. 17:6 (2006), 1424–1438.
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.6
, pp. 1424-1438
-
-
Wan, S.1
Banta, L.E.2
-
89
-
-
84859418371
-
Online learning and online convex optimization
-
Shalev-Shwartz, S., Online learning and online convex optimization. Found. Trends Mach. Learn. 4:2 (2012), 107–194.
-
(2012)
Found. Trends Mach. Learn.
, vol.4
, Issue.2
, pp. 107-194
-
-
Shalev-Shwartz, S.1
-
90
-
-
84963593976
-
Simnest: social media nested epidemic simulation via online semi-supervised deep learning
-
IEEE
-
Zhao, L., Chen, J., Chen, F., Wang, W., Lu, C., Ramakrishnan, N., Simnest: social media nested epidemic simulation via online semi-supervised deep learning. Proceedings of IEEE International Conference on Data Mining, 2015, IEEE, 639–648.
-
(2015)
Proceedings of IEEE International Conference on Data Mining
, pp. 639-648
-
-
Zhao, L.1
Chen, J.2
Chen, F.3
Wang, W.4
Lu, C.5
Ramakrishnan, N.6
-
91
-
-
85014899291
-
Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos
-
Yu, L., Chen, H., Dou, Q., Qin, J., Heng, P.A., Integrating online and offline three-dimensional deep learning for automated polyp detection in colonoscopy videos. IEEE J. Biomed. Health Inf. 21:1 (2017), 65–75.
-
(2017)
IEEE J. Biomed. Health Inf.
, vol.21
, Issue.1
, pp. 65-75
-
-
Yu, L.1
Chen, H.2
Dou, Q.3
Qin, J.4
Heng, P.A.5
-
92
-
-
85033491938
-
Incremental updating method for big data feature learning
-
Bu, F., Chen, Z., Zhang, Q., Incremental updating method for big data feature learning. Comput. Eng. Appl. 51:12 (2015), 21–26.
-
(2015)
Comput. Eng. Appl.
, vol.51
, Issue.12
, pp. 21-26
-
-
Bu, F.1
Chen, Z.2
Zhang, Q.3
-
93
-
-
70449436537
-
Incremental learning in nonstationary environments with controlled forgetting
-
IEEE
-
Elwell, R., Polikar, R., Incremental learning in nonstationary environments with controlled forgetting. Proceedings of International Joint Conference on Neural Networks, 2009, IEEE, 771–778.
-
(2009)
Proceedings of International Joint Conference on Neural Networks
, pp. 771-778
-
-
Elwell, R.1
Polikar, R.2
-
94
-
-
84973345832
-
Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering
-
IEEE
-
Chen, K., Huo, Q., Scalable training of deep learning machines by incremental block training with intra-block parallel optimization and blockwise model-update filtering. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, 2016, IEEE, 5880–5884.
-
(2016)
Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing
, pp. 5880-5884
-
-
Chen, K.1
Huo, Q.2
-
95
-
-
84857148573
-
The meaningful use of big data: four perspectives – four challenges
-
Bizer, C., Boncz, P., Brodie, M.L., Erling, O., The meaningful use of big data: four perspectives – four challenges. ACM SIGMOD Rec. 40:4 (2012), 56–60.
-
(2012)
ACM SIGMOD Rec.
, vol.40
, Issue.4
, pp. 56-60
-
-
Bizer, C.1
Boncz, P.2
Brodie, M.L.3
Erling, O.4
-
96
-
-
84899458050
-
Data quality management, data usage experience and acquisition intention of big data analytics
-
Kwon, O., Lee, N., Shi, B., Data quality management, data usage experience and acquisition intention of big data analytics. Int. J. Inf. Manage. 34:3 (2014), 387–394.
-
(2014)
Int. J. Inf. Manage.
, vol.34
, Issue.3
, pp. 387-394
-
-
Kwon, O.1
Lee, N.2
Shi, B.3
-
97
-
-
84963776305
-
Big data, big data quality problem
-
IEEE
-
Becker, D., King, T.D., McMullen, B., Big data, big data quality problem. Proceedings of IEEE International Conference on Big Data, 2015, IEEE, 2644–2653.
-
(2015)
Proceedings of IEEE International Conference on Big Data
, pp. 2644-2653
-
-
Becker, D.1
King, T.D.2
McMullen, B.3
-
98
-
-
84973631196
-
Big data quality: a roadmap for open data
-
IEEE
-
Ciancarini, P., Poggi, F., Russo, D., Big data quality: a roadmap for open data. Proceedings of IEEE International Conference on Big Data Computing Service and Applications, 2016, IEEE, 210–215.
-
(2016)
Proceedings of IEEE International Conference on Big Data Computing Service and Applications
, pp. 210-215
-
-
Ciancarini, P.1
Poggi, F.2
Russo, D.3
-
99
-
-
56449089103
-
Extracting and composing robust features with denoising autoencoders
-
ACM
-
Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P., Extracting and composing robust features with denoising autoencoders. Proceedings of International Conference on Machine learning, 2008, ACM, 1096–1103.
-
(2008)
Proceedings of International Conference on Machine learning
, pp. 1096-1103
-
-
Vincent, P.1
Larochelle, H.2
Bengio, Y.3
Manzagol, P.4
-
100
-
-
79551480483
-
Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
-
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P., Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11 (2010), 3371–3408.
-
(2010)
J. Mach. Learn. Res.
, vol.11
, pp. 3371-3408
-
-
Vincent, P.1
Larochelle, H.2
Lajoie, I.3
Bengio, Y.4
Manzagol, P.5
-
101
-
-
85033484812
-
Incomplete big data impputation algorithm based on deep learning
-
Bu, F., Chen, Z., Zhang, Q., Incomplete big data impputation algorithm based on deep learning. Microelectr. Comput. 31:12 (2014), 173–176.
-
(2014)
Microelectr. Comput.
, vol.31
, Issue.12
, pp. 173-176
-
-
Bu, F.1
Chen, Z.2
Zhang, Q.3
-
102
-
-
84963815828
-
Non-local auto-encoder with collaborative stabilization for image restoration
-
R, W., Tao, D., Non-local auto-encoder with collaborative stabilization for image restoration. IEEE Trans. Image Process. 25:5 (2016), 2117–2129.
-
(2016)
IEEE Trans. Image Process.
, vol.25
, Issue.5
, pp. 2117-2129
-
-
R, W.1
Tao, D.2
|