-
1
-
-
85008220577
-
Cancer statistics, 2016
-
R. L. Siegel, K. D. Miller, and A. Jemal, "Cancer statistics, 2016, " CA, Cancer J. Clinicians, vol. 66, pp. 7-30, 2016.
-
(2016)
CA, Cancer J. Clinicians
, vol.66
, pp. 7-30
-
-
Siegel, R.L.1
Miller, K.D.2
Jemal, A.3
-
2
-
-
84860237132
-
Factors influencing the miss rate of polyps in a back-to-back colonoscopy study
-
A. Leufkens, M. Van Oijen, F. Vleggaar, and P. Siersema, "Factors influencing the miss rate of polyps in a back-to-back colonoscopy study, " Endoscopy, vol. 44, no. 5, pp. 470-475, 2012.
-
(2012)
Endoscopy
, vol.44
, Issue.5
, pp. 470-475
-
-
Leufkens, A.1
Van Oijen, M.2
Vleggaar, F.3
Siersema, P.4
-
3
-
-
0037285705
-
Outcomes of colorectal cancer in the United States: No change in survival (1986-1997)
-
L. Rabeneck, H. B. El-Serag, J. A. Davila, and R. S. Sandler, "Outcomes of colorectal cancer in the United States: No change in survival (1986-1997), " Amer. J. Gastroenterology, vol. 98, no. 2, pp. 471-477, 2003.
-
(2003)
Amer. J. Gastroenterology
, vol.98
, Issue.2
, pp. 471-477
-
-
Rabeneck, L.1
El-Serag, H.B.2
Davila, J.A.3
Sandler, R.S.4
-
4
-
-
84864194314
-
Automatic segmentation of polyps in colonoscopic narrow-band imaging data
-
Aug.
-
M. Ganz, X. Yang, and G. Slabaugh, "Automatic segmentation of polyps in colonoscopic narrow-band imaging data, " IEEE Trans. Biomed. Eng., vol. 59, no. 8, pp. 2144-2151, Aug. 2012.
-
(2012)
IEEE Trans. Biomed. Eng.
, vol.59
, Issue.8
, pp. 2144-2151
-
-
Ganz, M.1
Yang, X.2
Slabaugh, G.3
-
5
-
-
0142151168
-
Computer-aided tumor detection in endoscopic video using color wavelet features
-
Sep.
-
S. Karkanis, D. K. Iakovidis, D. E. Maroulis, D. Karras, and M. Tzivras, "Computer-aided tumor detection in endoscopic video using color wavelet features, " IEEE Trans. Inf. Technol. Biomed., vol. 7, no. 3, pp. 141-152, Sep. 2003.
-
(2003)
IEEE Trans. Inf. Technol. Biomed.
, vol.7
, Issue.3
, pp. 141-152
-
-
Karkanis, S.1
Iakovidis, D.K.2
Maroulis, D.E.3
Karras, D.4
Tzivras, M.5
-
6
-
-
27544475997
-
A comparative study of texture features for the discrimination of gastric polyps in endoscopic video
-
D. K. Iakovidis, D. E. Maroulis, S. A. Karkanis, and A. Brokos, "A comparative study of texture features for the discrimination of gastric polyps in endoscopic video, " in Proc. 18th IEEE Symp. Comput.-Based Med. Syst., 2005, pp. 575-580.
-
(2005)
Proc. 18th IEEE Symp. Comput.-Based Med. Syst.
, pp. 575-580
-
-
Iakovidis, D.K.1
Maroulis, D.E.2
Karkanis, S.A.3
Brokos, A.4
-
7
-
-
51649094088
-
Color and position versus texture features for endoscopic polyp detection
-
L. A. Alexandre, N. Nobre, and J. Casteleiro, "Color and position versus texture features for endoscopic polyp detection, " in Proc. IEEE 2008 Int. Conf. Biomed. Eng. Informat., 2008, vol. 2, pp. 38-42.
-
(2008)
Proc. IEEE 2008 Int. Conf. Biomed. Eng. Informat.
, vol.2
, pp. 38-42
-
-
Alexandre, L.A.1
Nobre, N.2
Casteleiro, J.3
-
8
-
-
84879910416
-
Texture-based polyp detection in colonoscopy
-
New York, NY, USA: Springer
-
S. Ameling, S. Wirth, D. Paulus, G. Lacey, and F. Vilarino, "Texture-based polyp detection in colonoscopy, " in Bildverarbeitung für dieMedizin 2009, New York, NY, USA: Springer, 2009, pp. 346-350.
-
(2009)
Bildverarbeitung für DieMedizin 2009
, pp. 346-350
-
-
Ameling, S.1
Wirth, S.2
Paulus, D.3
Lacey, G.4
Vilarino, F.5
-
9
-
-
48149106006
-
Polyp detection in colonoscopy video using elliptical shape feature
-
S. Hwang, J. Oh, W. Tavanapong, J. Wong, and P. C. De Groen, "Polyp detection in colonoscopy video using elliptical shape feature, " in Proc. IEEE Int. Conf. Image Process., 2007, vol. 2, pp. II-465-II-468.
-
(2007)
Proc. IEEE Int. Conf. Image Process.
, vol.2
, pp. II465-II468
-
-
Hwang, S.1
Oh, J.2
Tavanapong, W.3
Wong, J.4
De Groen, P.C.5
-
10
-
-
84861592104
-
Towards automatic polyp detection with a polyp appearance model
-
J. Bernal, J. Sánchez, and F. Vilarino, "Towards automatic polyp detection with a polyp appearance model, " Pattern Recognit., vol. 45, no. 9, pp. 3166-3182, 2012.
-
(2012)
Pattern Recognit.
, vol.45
, Issue.9
, pp. 3166-3182
-
-
Bernal, J.1
Sánchez, J.2
Vilarino, F.3
-
11
-
-
84929916705
-
WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. Saliency maps from physicians
-
J. Bernal, F. J. Sánchez, G. Fernández-Esparrach, D. Gil, C. Rodrguez, and F. Vilariño, "WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians, " Comput. Med. Imag. Graph., vol. 43, pp. 99-111, 2015.
-
(2015)
Comput. Med. Imag. Graph.
, vol.43
, pp. 99-111
-
-
Bernal, J.1
Sánchez, F.J.2
Fernández-Esparrach, G.3
Gil, D.4
Rodrguez, C.5
Vilariño, F.6
-
12
-
-
84904342890
-
Partbased multiderivative edge cross-sectional profiles for polyp detection in colonoscopy
-
Jul.
-
Y. Wang, W. Tavanapong, J. Wong, J. Oh, and P. C. de Groen, "Partbased multiderivative edge cross-sectional profiles for polyp detection in colonoscopy, " IEEE J. Biomed. Health Informat., vol. 18, no. 4, pp. 1379-1389, Jul. 2014.
-
(2014)
IEEE J. Biomed. Health Informat.
, vol.18
, Issue.4
, pp. 1379-1389
-
-
Wang, Y.1
Tavanapong, W.2
Wong, J.3
Oh, J.4
De Groen, P.C.5
-
13
-
-
84929963303
-
Polypalert: Near real-time feedback during colonoscopy
-
Y. Wang, W. Tavanapong, J. Wong, J. H. Oh, and P. C. De Groen, "Polypalert: Near real-time feedback during colonoscopy, " Comput. Methods Programs Biomed., vol. 120, no. 3, pp. 164-179, 2015.
-
(2015)
Comput. Methods Programs Biomed.
, vol.120
, Issue.3
, pp. 164-179
-
-
Wang, Y.1
Tavanapong, W.2
Wong, J.3
Oh, J.H.4
De Groen, P.C.5
-
14
-
-
84860352908
-
A colon video analysis framework for polyp detection
-
May
-
S. Y. Park, D. Sargent, I. Spofford, K. G. Vosburgh, and A. Yousif, "A colon video analysis framework for polyp detection, " IEEE Trans. Biomed. Eng., vol. 59, no. 5, pp. 1408-1418, May 2012.
-
(2012)
IEEE Trans. Biomed. Eng.
, vol.59
, Issue.5
, pp. 1408-1418
-
-
Park, S.Y.1
Sargent, D.2
Spofford, I.3
Vosburgh, K.G.4
Yousif, A.5
-
15
-
-
84897112495
-
Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer
-
J. Silva, A. Histace, O. Romain, X. Dray, andB. Granado, "Toward embedded detection of polyps in WCE images for early diagnosis of colorectal cancer, " Int. J. Comput. Assisted Radiol. Surg., vol. 9, no. 2, pp. 283-293, 2014.
-
(2014)
Int. J. Comput. Assisted Radiol. Surg.
, vol.9
, Issue.2
, pp. 283-293
-
-
Silva, J.1
Histace, A.2
Romain, O.3
Dray, X.4
Granado, B.5
-
16
-
-
84959449815
-
Automated polyp detection in colonoscopy videos using shape and context information
-
Feb.
-
N. Tajbakhsh, S. R. Gurudu, and J. Liang, "Automated polyp detection in colonoscopy videos using shape and context information, " IEEE Trans. Med. Imag., vol. 35, no. 2, pp. 630-644, Feb. 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.2
, pp. 630-644
-
-
Tajbakhsh, N.1
Gurudu, S.R.2
Liang, J.3
-
17
-
-
84968638584
-
Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks
-
May
-
A. A. A. Setio et al., "Pulmonary nodule detection in CT images: False positive reduction using multi-view convolutional networks, " IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1160-1169, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1160-1169
-
-
Setio, A.A.A.1
-
18
-
-
84947424557
-
Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks
-
New York, NY, USA: Springer
-
H. Chen et al., "Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks, " in International Conference on Medical Image Computing and Computer-Assisted Intervention. New York, NY, USA: Springer, 2015, pp. 507-514.
-
(2015)
International Conference on Medical Image Computing and Computer-Assisted Intervention
, pp. 507-514
-
-
Chen, H.1
-
19
-
-
84968662241
-
Lung pattern classification for interstitial lung diseases using a deep convolutional neural network
-
May
-
M. Anthimopoulos, S. Christodoulidis, L. Ebner, A. Christe, and S. Mougiakakou, "Lung pattern classification for interstitial lung diseases using a deep convolutional neural network, " IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1207-1216, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1207-1216
-
-
Anthimopoulos, M.1
Christodoulidis, S.2
Ebner, L.3
Christe, A.4
Mougiakakou, S.5
-
20
-
-
84969962996
-
Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning
-
May
-
H.-C. Shin et al., "Deep convolutional neural networks for computeraided detection: CNN architectures, dataset characteristics and transfer learning, " IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1285-1298, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1285-1298
-
-
Shin, H.-C.1
-
21
-
-
84968649810
-
Convolutional neural networks for medical image analysis: Full training or fine tuning
-
May
-
N. Tajbakhsh et al., "Convolutional neural networks for medical image analysis: Full training or fine tuning" IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1299-1312, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1299-1312
-
-
Tajbakhsh, N.1
-
22
-
-
84909644435
-
A new 2. 5D representation for lymph node detection using random sets of deep convolutional neural network observations
-
New York, NY, USA: Springer
-
H. R. Roth et al., "A new 2. 5D representation for lymph node detection using random sets of deep convolutional neural network observations, " in Proc. Med. Image Comput. Comput.-Assisted Intervention Conf. 2014, New York, NY, USA: Springer, 2014, pp. 520-527.
-
(2014)
Proc. Med. Image Comput. Comput.-Assisted Intervention Conf. 2014
, pp. 520-527
-
-
Roth, H.R.1
-
23
-
-
85007153968
-
Mitosis detection in breast cancer histology images via deep cascaded networks
-
H. Chen, Q. Dou, X. Wang, J. Qin, and P. A. Heng, "Mitosis detection in breast cancer histology images via deep cascaded networks, " in Proc. 30th AAAI Conf. Artif. Intell., 2016, pp. 1160-1166.
-
(2016)
Proc. 30th AAAI Conf. Artif. Intell.
, pp. 1160-1166
-
-
Chen, H.1
Dou, Q.2
Wang, X.3
Qin, J.4
Heng, P.A.5
-
24
-
-
84947475390
-
DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation
-
New York, NY, USA: Springer
-
H. R. Roth et al., "DeepOrgan: Multi-level deep convolutional networks for automated pancreas segmentation, " in International Conference on Medical Image Computing and Computer-Assisted Intervention. New York, NY, USA: Springer, 2015, pp. 556-564.
-
(2015)
International Conference on Medical Image Computing and Computer-Assisted Intervention
, pp. 556-564
-
-
Roth, H.R.1
-
25
-
-
84951834022
-
U-Net: Convolutional networks for biomedical image segmentation
-
New York, NY, USA: Springer
-
O. Ronneberger, P. Fischer, and T. Brox, "U-Net: Convolutional networks for biomedical image segmentation, " in International Conference on Medical Image Computing and Computer-Assisted Intervention. New York, NY, USA: Springer, 2015, pp. 234-241.
-
(2015)
International Conference on Medical Image Computing and Computer-Assisted Intervention
, pp. 234-241
-
-
Ronneberger, O.1
Fischer, P.2
Brox, T.3
-
26
-
-
84986267644
-
DCAN: Deep contour-aware networks for accurate gland segmentation
-
H. Chen, X. Qi, L. Yu, and P.-A. Heng, "DCAN: Deep contour-aware networks for accurate gland segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2487-2496.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 2487-2496
-
-
Chen, H.1
Qi, X.2
Yu, L.3
Heng, P.-A.4
-
27
-
-
84968626579
-
Automatic segmentation of MR brain images with a convolutional neural network
-
May
-
P. Moeskops, M. A. Viergever, A. M. Mendrik, L. S. de Vries, M. J. Benders, and I. Isgum, "Automatic segmentation of MR brain images with a convolutional neural network, " IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1252-1261, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1252-1261
-
-
Moeskops, P.1
Viergever, M.A.2
Mendrik, A.M.3
De Vries, L.S.4
Benders, M.J.5
Isgum, I.6
-
28
-
-
85007271408
-
Deep contextual networks for neuronal structure segmentation
-
H. Chen, X. J. Qi, J. Z. Cheng, and P. A. Heng, "Deep contextual networks for neuronal structure segmentation, " in Proc. 13th AAAI Conf. Artif. Intell., 2016, pp. 1167-1173.
-
(2016)
Proc. 13th AAAI Conf. Artif. Intell.
, pp. 1167-1173
-
-
Chen, H.1
Qi, X.J.2
Cheng, J.Z.3
Heng, P.A.4
-
29
-
-
84978427941
-
Fully convolutional networks for multi-modality isointense infant brain image segmentation
-
D. Nie, L. Wang, Y. Gao, and D. Sken, "Fully convolutional networks for multi-modality isointense infant brain image segmentation, " in Proc. 2016 IEEE 13th Int. Symp. Biomed. Imag., 2016, pp. 1342-1345.
-
(2016)
Proc. 2016 IEEE 13th Int. Symp. Biomed. Imag.
, pp. 1342-1345
-
-
Nie, D.1
Wang, L.2
Gao, Y.3
Sken, D.4
-
30
-
-
84944325843
-
Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks
-
N. Tajbakhsh, S. R. Gurudu, and J. Liang, "Automatic polyp detection in colonoscopy videos using an ensemble of convolutional neural networks, " in Proc. 2015 IEEE 12th Int. Symp. Biomed. Imag., 2015, pp. 79-83.
-
(2015)
Proc. 2015 IEEE 12th Int. Symp. Biomed. Imag.
, pp. 79-83
-
-
Tajbakhsh, N.1
Gurudu, S.R.2
Liang, J.3
-
31
-
-
84968586012
-
Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation
-
May
-
T. Brosch, L. Y. Tang, Y. Yoo, D. K. Li, A. Traboulsee, and R. Tam, "Deep 3D convolutional encoder networks with shortcuts for multiscale feature integration applied to multiple sclerosis lesion segmentation, " IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1229-1239, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1229-1239
-
-
Brosch, T.1
Tang, L.Y.2
Yoo, Y.3
Li, D.K.4
Traboulsee, A.5
Tam, R.6
-
33
-
-
84968542337
-
Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
-
May
-
Q. Dou et al., "Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks, " IEEE Trans. Med. Imag., vol. 35, no. 5, pp. 1182-1195, May 2016.
-
(2016)
IEEE Trans. Med. Imag.
, vol.35
, Issue.5
, pp. 1182-1195
-
-
Dou, Q.1
-
34
-
-
84906979740
-
Deep learning based imaging data completion for improved brain disease diagnosis
-
New York, NY, USA: Springer
-
R. Li et al., "Deep learning based imaging data completion for improved brain disease diagnosis, " in International Conference on Medical Image Computing and Computer-Assisted Intervention. New York, NY, USA: Springer, 2014, pp. 305-312.
-
(2014)
International Conference on Medical Image Computing and Computer-Assisted Intervention
, pp. 305-312
-
-
Li, R.1
-
35
-
-
84870183903
-
3D convolutional neural networks for human action recognition
-
Jan.
-
S. Ji, W. Xu, M. Yang, and K. Yu, "3D convolutional neural networks for human action recognition, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 221-231, Jan. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.1
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
36
-
-
84973865953
-
Learning spatiotemporal features with 3D convolutional networks
-
D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, "Learning spatiotemporal features with 3D convolutional networks, " in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 4489-4497.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis.
, pp. 4489-4497
-
-
Tran, D.1
Bourdev, L.2
Fergus, R.3
Torresani, L.4
Paluri, M.5
-
37
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
J. Long, E. Shelhamer, and T. Darrell, "Fully convolutional networks for semantic segmentation, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2015, pp. 3431-3440.
-
(2015)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
38
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Nov.
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition, " Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
-
(1998)
Proc. IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
40
-
-
84986274465
-
Deep residual learning for image recognition
-
K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 770-778.
-
(2016)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 770-778
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
41
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet classification with deep convolutional neural networks, " in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst.
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
42
-
-
84911364368
-
Large-scale video classification with convolutional neural networks
-
A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and L. Fei-Fei, "Large-scale video classification with convolutional neural networks, " in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014, pp. 1725-1732.
-
(2014)
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
, pp. 1725-1732
-
-
Karpathy, A.1
Toderici, G.2
Shetty, S.3
Leung, T.4
Sukthankar, R.5
Fei-Fei, L.6
-
43
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Y. Jia et al., "Caffe: Convolutional architecture for fast feature embedding, " in Proc. 22nd ACM Int. Conf. Multimedia, 2014, pp. 675-678.
-
(2014)
Proc. 22nd ACM Int. Conf. Multimedia
, pp. 675-678
-
-
Jia, Y.1
-
44
-
-
84957922397
-
YFCC100M: The new data in multimedia research
-
Jan.
-
B. Thomee et al., "YFCC100M: The new data in multimedia research, " Commun. ACM, vol. 59, no. 2, pp. 64-73, Jan. 2016.
-
(2016)
Commun. ACM
, vol.59
, Issue.2
, pp. 64-73
-
-
Thomee, B.1
-
45
-
-
84964544562
-
-
arXiv:1412. 6550
-
A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and Y. Bengio, "Fitnets: Hints for thin deep nets, " arXiv:1412. 6550, 2014.
-
(2014)
Fitnets: Hints for Thin Deep Nets
-
-
Romero, A.1
Ballas, N.2
Kahou, S.E.3
Chassang, A.4
Gatta, C.5
Bengio, Y.6
-
46
-
-
84990055874
-
XNOR-Net: ImageNet classification using binary convolutional neural networks
-
Amsterdam, The Netherlands, Oct. 11-14
-
M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, "XNOR-Net: ImageNet classification using binary convolutional neural networks, " in Proc. 14th Eur. Conf. Comput. Vis., Amsterdam, The Netherlands, Oct. 11-14, 2016, pp. 525-542
-
(2016)
Proc. 14th Eur. Conf. Comput. Vis.
, pp. 525-542
-
-
Rastegari, M.1
Ordonez, V.2
Redmon, J.3
Farhadi, A.4
|