-
1
-
-
0033690881
-
Musical instrument recognition using cepstral coefficients and temporal features
-
A. Eronen and A. Klapuri, "Musical instrument recognition using cepstral coefficients and temporal features," in Proc. 2000 IEEE Int. Conf. Acoust., Speech Signal Process., 2000, vol. 2, pp. II753-II756.
-
(2000)
Proc. 2000 IEEE Int. Conf. Acoust., Speech Signal Process
, vol.2
, pp. II753-II756
-
-
Eronen, A.1
Klapuri, A.2
-
2
-
-
84905239447
-
Modified group delay feature for musical instrument recognition
-
Marseille, France
-
A. Diment, P. Rajan, T. Heittola, and T. Virtanen, "Modified group delay feature for musical instrument recognition," in Proc. 10th Int. Symp. Comput. Music Multidiscip. Res., Marseille, France, 2013, pp. 431-438.
-
(2013)
Proc. 10th Int. Symp. Comput. Music Multidiscip. Res
, pp. 431-438
-
-
Diment, A.1
Rajan, P.2
Heittola, T.3
Virtanen, T.4
-
3
-
-
84905252350
-
Sparse cepstral codes and power scale for instrument identification
-
L.-F. Yu, L. Su, andY.-H. Yang, "Sparse cepstral codes and power scale for instrument identification," in Proc. 2014 IEEE Int. Conf. Acoust., Speech Signal Process., 2014, pp. 7460-7464.
-
(2014)
Proc. 2014 IEEE Int. Conf. Acoust., Speech Signal Process
, pp. 7460-7464
-
-
Yu, L.-F.1
Su, L.2
Yang, Y.-H.3
-
4
-
-
4544247190
-
Music instrument recognition: From isolated notes to solo phrases
-
A. Krishna and T. V. Sreenivas, "Music instrument recognition: From isolated notes to solo phrases," in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2004, vol. 4, pp. iv-265-iv-268.
-
(2004)
Proc. IEEE Int. Conf. Acoust., Speech Signal Process
, vol.4
, pp. 4265-4268
-
-
Krishna, A.1
Sreenivas, T.V.2
-
5
-
-
84979951013
-
Musical instrument recognition on solo performances
-
S. Essid, G. Richard, and B. David, "Musical instrument recognition on solo performances," in Proc. 2004 12th Eur. Signal Process. Conf., 2004, pp. 1289-1292.
-
(2004)
Proc. 2004 12th Eur. Signal Process. Conf
, pp. 1289-1292
-
-
Essid, S.1
Richard, G.2
David, B.3
-
6
-
-
84873616077
-
Musical instrument recognition in polyphonic audio using source-filter model for sound separation
-
T. Heittola, A. Klapuri, and T. Virtanen, "Musical instrument recognition in polyphonic audio using source-filter model for sound separation," in Proc. Int. Soc. Music Inf. Retrieval Conf., 2009, pp. 327-332.
-
(2009)
Proc. Int. Soc. Music Inf. Retrieval Conf
, pp. 327-332
-
-
Heittola, T.1
Klapuri, A.2
Virtanen, T.3
-
7
-
-
33846220762
-
Instrument identification in polyphonic music: Feature weighting to minimize influence of sound overlaps
-
T. Kitahara, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno, "Instrument identification in polyphonic music: Feature weighting to minimize influence of sound overlaps," EURASIP J. Appl. Signal Process., vol. 2007, no. 1, pp. 155-155, 2007.
-
(2007)
EURASIP J. Appl. Signal Process.
, vol.2007
, Issue.1
, pp. 155
-
-
Kitahara, T.1
Goto, M.2
Komatani, K.3
Ogata, T.4
Okuno, H.G.5
-
8
-
-
84905230347
-
A novel cepstral representation for timbre modeling of sound sources in polyphonic mixtures
-
Z. Duan, B. Pardo, and L. Daudet, "A novel cepstral representation for timbre modeling of sound sources in polyphonic mixtures," in Proc. 2014 IEEE Int. Conf. Acoust., Speech Signal Process., 2014, pp. 7495-7499.
-
(2014)
Proc. 2014 IEEE Int. Conf. Acoust., Speech Signal Process
, pp. 7495-7499
-
-
Duan, Z.1
Pardo, B.2
Daudet, L.3
-
9
-
-
85093013113
-
Rwcmusic database: Music genre database and musical instrument sound database
-
M. Goto, H. Hashiguchi, T. Nishimura, and R. Oka, "RWCmusic database: Music genre database and musical instrument sound database," in Proc. Int. Soc. Music Inf. Retrieval Conf., 2003, vol. 3, pp. 229-230.
-
(2003)
Proc. Int. Soc. Music Inf. Retrieval Conf
, vol.3
, pp. 229-230
-
-
Goto, M.1
Hashiguchi, H.2
Nishimura, T.3
Oka, R.4
-
10
-
-
84930630277
-
Deep learning
-
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature, vol. 521, no. 7553, pp. 436-444, 2015.
-
(2015)
Nature
, vol.521
, Issue.7553
, pp. 436-444
-
-
LeCun, Y.1
Bengio, Y.2
Hinton, G.3
-
11
-
-
84903724014
-
Deep learning: Methods and applications
-
L. Deng and D. Yu, "Deep learning: Methods and applications," Found. Trends Signal Process., vol. 7, no. 3-4, pp. 197-387, 2014.
-
(2014)
Found. Trends Signal Process.
, vol.7
, Issue.3-4
, pp. 197-387
-
-
Deng, L.1
Yu, D.2
-
12
-
-
79959829092
-
Recurrent neural network based language model
-
T. Mikolov, M. Karafiát, L. Burget, J. Cernocḱy, and S. Khudanpur, "Recurrent neural network based language model," in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2010, vol. 2, pp. 1045-1048.
-
(2010)
Proc. Annu. Conf. Int. Speech Commun. Assoc
, vol.2
, pp. 1045-1048
-
-
Mikolov, T.1
Karafiát, M.2
Burget, L.3
Cernocḱy, J.4
Khudanpur, S.5
-
13
-
-
84906237242
-
Investigation of recurrentneural-network architectures and learning methods for spoken language understanding
-
G. Mesnil, X. He, L. Deng, and Y. Bengio, "Investigation of recurrentneural-network architectures and learning methods for spoken language understanding," in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2013, pp. 3771-3775.
-
(2013)
Proc. Annu. Conf. Int. Speech Commun. Assoc
, pp. 3771-3775
-
-
Mesnil, G.1
He, X.2
Deng, L.3
Bengio, Y.4
-
14
-
-
84904483474
-
Recurrent neural networks for language understanding
-
K. Yao, G. Zweig, M.-Y. Hwang, Y. Shi, and D. Yu, "Recurrent neural networks for language understanding," in Proc. Annu. Conf. Int. Speech Commun. Assoc., 2013, pp. 2524-2528.
-
(2013)
Proc. Annu. Conf. Int. Speech Commun. Assoc
, pp. 2524-2528
-
-
Yao, K.1
Zweig, G.2
Hwang, M.-Y.3
Shi, Y.4
Yu, D.5
-
15
-
-
0002859310
-
Learning algorithms for classification: A comparison on handwritten digit recognition
-
Y. LeCun et al., "Learning algorithms for classification: A comparison on handwritten digit recognition," Neural Netw. : Stat. Mech. Perspect., vol. 261, pp. 261-276, 1995.
-
(1995)
Neural Netw. : Stat. Mech. Perspect.
, vol.261
, pp. 261-276
-
-
LeCun, Y.1
-
16
-
-
40849143505
-
Handwritten digit recognition using convolutional neural networks andGabor filters
-
A. Calderón, S. Roa, and J. Victorino, "Handwritten digit recognition using convolutional neural networks andGabor filters," in Proc. Int. Congr. Comput. Intell, 2003.
-
(2003)
Proc. Int. Congr. Comput. Intell
-
-
Calderón, A.1
Roa, S.2
Victorino, J.3
-
17
-
-
83655163714
-
A novel hybrid CNN-SVM classifier for recognizing handwritten digits
-
X.-X. Niu and C. Y. Suen, "A novel hybrid CNN-SVM classifier for recognizing handwritten digits," Pattern Recog., vol. 45, no. 4, pp. 1318-1325, 2012.
-
(2012)
Pattern Recog.
, vol.45
, Issue.4
, pp. 1318-1325
-
-
Niu, X.-X.1
Suen, C.Y.2
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., 2012, pp. 1097-1105.
-
(2012)
Proc. Adv. Neural Inf. Process. Syst
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
19
-
-
85161972005
-
Tiled convolutional neural networks
-
J. Ngiam, Z. Chen, D. Chia, P. W. Koh, Q. V. Le, and A. Y. Ng, "Tiled convolutional neural networks," in Proc. Adv. Neural Inf. Process. Syst., 2010, pp. 1279-1287.
-
(2010)
Proc. Adv. Neural Inf. Process. Syst
, pp. 1279-1287
-
-
Ngiam, J.1
Chen, Z.2
Chia, D.3
Koh, P.W.4
Le, Q.V.5
Ng, A.Y.6
-
20
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
-
Nov.
-
G. Hinton et al., "Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups," IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82-97, Nov. 2012.
-
(2012)
IEEE Signal Process. Mag.
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
-
21
-
-
84864146684
-
Temporal pooling and multiscale learning for automatic annotation and ranking of music audio
-
P. Hamel, S. Lemieux, Y. Bengio, and D. Eck, "Temporal pooling and multiscale learning for automatic annotation and ranking of music audio," in Proc. Int. Soc. Music Inf. Retrieval Conf., 2011, pp. 729-734.
-
(2011)
Proc. Int. Soc. Music Inf. Retrieval Conf
, pp. 729-734
-
-
Hamel, P.1
Lemieux, S.2
Bengio, Y.3
Eck, D.4
-
23
-
-
84873577775
-
Rethinking automatic chord recognition with convolutional neural networks
-
E. J. Humphrey and J. P. Bello, "Rethinking automatic chord recognition with convolutional neural networks," in Proc. 2012 11th Int. Conf. Mach. Learn. Appl., 2012, vol. 2, pp. 357-362.
-
(2012)
Proc. 2012 11th Int. Conf. Mach. Learn. Appl
, vol.2
, pp. 357-362
-
-
Humphrey, E.J.1
Bello, J.P.2
-
24
-
-
85054275611
-
Audio chord recognition with recurrent neural networks
-
N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent, "Audio chord recognition with recurrent neural networks," in Proc. Int. Soc. Music Inf. Retrieval Conf., 2013, pp. 335-340.
-
(2013)
Proc. Int. Soc. Music Inf. Retrieval Conf
, pp. 335-340
-
-
Boulanger-Lewandowski, N.1
Bengio, Y.2
Vincent, P.3
-
25
-
-
85007420949
-
Boundary detection inmusic structure analysis using convolutional neural networks
-
K. Ullrich, J. Schlüter, and T. Grill, "Boundary detection inmusic structure analysis using convolutional neural networks," in Proc. Int. Soc. Music Inf. Retrieval Conf., 2014, pp. 417-422.
-
(2014)
Proc. Int. Soc. Music Inf. Retrieval Conf
, pp. 417-422
-
-
Ullrich, K.1
Schlüter, J.2
Grill, T.3
-
26
-
-
85009059267
-
Music boundary detection using neural networks on combined features and two-level annotations
-
Malaga, Spain
-
T. Grill and J. Schlüter, "Music boundary detection using neural networks on combined features and two-level annotations," in Proc. 16th Int. Soc. Music Inf. Retr. Conf., Malaga, Spain, 2015.
-
(2015)
Proc. 16th Int. Soc. Music Inf. Retr. Conf
-
-
Grill, T.1
Schlüter, J.2
-
29
-
-
84946030537
-
Speech acoustic modeling from raw multichannel waveforms
-
Y. Hoshen,R. J. Weiss, andK. W. Wilson, "Speech acoustic modeling from raw multichannel waveforms," in Proc. 2015 IEEE Int. Conf., Acoust., Speech Signal Process., 2015, pp. 4624-4628.
-
(2015)
Proc. 2015 IEEE Int. Conf., Acoust., Speech Signal Process
, pp. 4624-4628
-
-
Hoshen, Y.1
Weiss, R.J.2
Wilson, A.W.3
-
31
-
-
84873444848
-
Learning sparse feature representations formusic annotation and retrieval
-
J. Nam, J. Herrera, M. Slaney, and J. O. Smith, "Learning sparse feature representations formusic annotation and retrieval," in Proc. Int. Soc. Music Inf. Retrieval Conf., 2012, pp. 565-570.
-
(2012)
Proc. Int. Soc. Music Inf. Retrieval Conf
, pp. 565-570
-
-
Nam, J.1
Herrera, J.2
Slaney, M.3
Smith, J.O.4
-
33
-
-
84906489074
-
Visualizing and understanding convolutional networks
-
M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in Proc. Eur. Conf. Comput. Vis., 2014, pp. 818-833.
-
(2014)
Proc. Eur. Conf. Comput. Vis
, pp. 818-833
-
-
Zeiler, M.D.1
Fergus, R.2
-
34
-
-
84906347546
-
-
arXiv:1312. 6229
-
P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. LeCun, "Overfeat: Integrated recognition, localization and detection using convolutional networks," arXiv:1312. 6229, 2013.
-
(2013)
Overfeat: Integrated Recognition, Localization and Detection Using Convolutional Networks
-
-
Sermanet, P.1
Eigen, D.2
Zhang, X.3
Mathieu, M.4
Fergus, R.5
LeCun, Y.6
-
37
-
-
84904163933
-
Dropout: A simple way to prevent neural networks from overfitting
-
N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: A simple way to prevent neural networks from overfitting," J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929-1958, 2014.
-
(2014)
J. Mach. Learn. Res.
, vol.15
, Issue.1
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
38
-
-
84992462621
-
2D fake fingerprint detection based on improved CNN and local descriptors for smart phone
-
Y. Zhang, B. Zhou, H. Wu, and C. Wen, "2D fake fingerprint detection based on improved CNN and local descriptors for smart phone," in Proc. Chin. Conf. Biometric Recog., 2016, pp. 655-662.
-
(2016)
Proc. Chin. Conf. Biometric Recog
, pp. 655-662
-
-
Zhang, Y.1
Zhou, B.2
Wu, H.3
Wen, C.4
-
39
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
X. Glorot and Y. Bengio, "Understanding the difficulty of training deep feedforward neural networks," in Proc. Int. Conf. Artif. Intell. Stat., 2010, pp. 249-256.
-
(2010)
Proc. Int. Conf. Artif. Intell. Stat
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
41
-
-
77956509090
-
Rectified linear units improve restricted Boltzmann machines
-
V. Nair and G. E. Hinton, "Rectified linear units improve restricted Boltzmann machines," in Proc. 27th Int. Conf. Mach. Learn., 2010, pp. 807-814.
-
(2010)
Proc. 27th Int. Conf. Mach. Learn
, pp. 807-814
-
-
Nair, V.1
Hinton, G.E.2
-
42
-
-
84893676344
-
Rectifier nonlinearities improve neural network acoustic models
-
A. L. Maas, A. Y. Hannun, and A. Y. Ng, "Rectifier nonlinearities improve neural network acoustic models," in Proc. Int. Conf. Mach. Learn., 2013, vol. 30, p. 1.
-
(2013)
Proc. Int. Conf. Mach. Learn
, vol.30
, pp. 1
-
-
Maas, A.L.1
Hannun, A.Y.2
Ng, A.Y.3
-
43
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
-
K. He, X. Zhang, S. Ren, and J. Sun, "Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification," in Proc. IEEE Int. Conf. Comput. Vis., 2015, pp. 1026-1034.
-
(2015)
Proc. IEEE Int. Conf. Comput. Vis
, pp. 1026-1034
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
44
-
-
84960920723
-
-
arXiv:1505. 00853
-
B. Xu, N. Wang, T. Chen, and M. Li, "Empirical evaluation of rectified activations in convolutional network," arXiv:1505. 00853, 2015.
-
(2015)
Empirical Evaluation of Rectified Activations in Convolutional Network
-
-
Xu, B.1
Wang, N.2
Chen, T.3
Li, M.4
-
45
-
-
84873436256
-
A comparison of sound segregation techniques for predominant instrument recognition in musical audio signals
-
J. J. Bosch, J. Janer, F. Fuhrmann, and P. Herrera, "A comparison of sound segregation techniques for predominant instrument recognition in musical audio signals," in Proc. Int. Soc. Music Inf. Retrieval Conf., 2012, pp. 559-564.
-
(2012)
Proc. Int. Soc. Music Inf. Retrieval Conf
, pp. 559-564
-
-
Bosch, J.J.1
Janer, J.2
Fuhrmann, F.3
Herrera, P.4
-
46
-
-
85139270516
-
Polyphonic instrument recognition for exploring semantic similarities in music
-
F. Fuhrmann and P. Herrera, "Polyphonic instrument recognition for exploring semantic similarities in music," in Proc. 13th Int. Conf. Digit. Audio Effects, 2010, pp. 1-8.
-
(2010)
Proc. 13th Int. Conf. Digit. Audio Effects
, pp. 1-8
-
-
Fuhrmann, F.1
Herrera, P.2
-
47
-
-
85054435084
-
Neural network ensembles, cross validation, and active learning
-
A. Krogh et al., "Neural network ensembles, cross validation, and active learning," Adv. Neural Inf. Process. Syst., vol. 7, pp. 231-238, 1995.
-
(1995)
Adv. Neural Inf. Process. Syst.
, vol.7
, pp. 231-238
-
-
Krogh, A.1
-
48
-
-
77949581963
-
Harmonic and percussive sound separation and its application toMIR-related tasks
-
Berlin, Germany: Springer
-
N. Ono et al., "Harmonic and percussive sound separation and its application toMIR-related tasks," in Advances in Music Information Retrieval. Berlin, Germany: Springer, 2010, pp. 213-236.
-
(2010)
Advances in Music Information Retrieval
, pp. 213-236
-
-
Ono, N.1
-
49
-
-
70350477898
-
Music onset detection combining energy-based and pitch-based approaches
-
R. Zhou and J. D. Reiss, "Music onset detection combining energy-based and pitch-based approaches," in Proc. MIREX Audio Onset Detect. Contest, 2007.
-
(2007)
Proc. MIREX Audio Onset Detect. Contest
-
-
Zhou, R.1
Reiss, J.D.2
-
51
-
-
84959091021
-
-
arXiv:1506. 06579
-
J. Yosinski, J. Clune, A. Nguyen, T. Fuchs, and H. Lipson, "Understanding neural networks through deep visualization," arXiv:1506. 06579, 2015.
-
(2015)
Understanding Neural Networks Through Deep Visualization
-
-
Yosinski, J.1
Clune, J.2
Nguyen, A.3
Fuchs, T.4
Lipson, H.5
|