메뉴 건너뛰기




Volumn 27, Issue 2, 2016, Pages 361-374

Bayesian Recurrent Neural Network for Language Modeling

Author keywords

Bayesian learning; Hessian matrix; language model; rapid approximation; recurrent neural network.

Indexed keywords

BAYESIAN NETWORKS; COMPUTATIONAL LINGUISTICS; CONTINUOUS SPEECH RECOGNITION; MODELING LANGUAGES; PARAMETER ESTIMATION; RECURRENT NEURAL NETWORKS; SPEECH RECOGNITION; UNCERTAINTY ANALYSIS;

EID: 84949921270     PISSN: 2162237X     EISSN: 21622388     Source Type: Journal    
DOI: 10.1109/TNNLS.2015.2499302     Document Type: Article
Times cited : (132)

References (41)
  • 1
    • 34147179506 scopus 로고    scopus 로고
    • Association pattern language modeling
    • Sep
    • J.-T. Chien, "Association pattern language modeling, " IEEE Trans. Audio, Speech, Language Process., vol. 14, no. 5, pp. 1719-1728, Sep. 2006.
    • (2006) IEEE Trans. Audio, Speech, Language Process , vol.14 , Issue.5 , pp. 1719-1728
    • Chien, J.-T.1
  • 2
    • 0025446887 scopus 로고
    • A cache-based natural language model for speech recognition
    • Jun
    • R. Kuhn and R. de Mori, "A cache-based natural language model for speech recognition, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 12, no. 6, pp. 570-583, Jun. 1990.
    • (1990) IEEE Trans. Pattern Anal. Mach. Intell , vol.12 , Issue.6 , pp. 570-583
    • Kuhn, R.1    De Mori, R.2
  • 3
    • 78149256857 scopus 로고    scopus 로고
    • Dirichlet class language models for speech recognition
    • Mar
    • J.-T. Chien and C.-H. Chueh, "Dirichlet class language models for speech recognition, " IEEE Trans. Audio, Speech, Language Process., vol. 19, no. 3, pp. 482-495, Mar. 2011.
    • (2011) IEEE Trans. Audio, Speech, Language Process , vol.19 , Issue.3 , pp. 482-495
    • Chien, J.-T.1    Chueh, C.-H.2
  • 6
    • 0033329799 scopus 로고    scopus 로고
    • An empirical study of smoothing techniques for language modeling
    • Oct
    • S. F. Chen and J. Goodman, "An empirical study of smoothing techniques for language modeling, " Comput. Speech Lang., vol. 13, no. 4, pp. 359-394, Oct. 1999.
    • (1999) Comput. Speech Lang , vol.13 , Issue.4 , pp. 359-394
    • Chen, S.F.1    Goodman, J.2
  • 9
    • 33847610331 scopus 로고    scopus 로고
    • Continuous space language models
    • Jul
    • H. Schwenk, "Continuous space language models, " Comput. Speech Lang., vol. 21, no. 3, pp. 492-518, Jul. 2007.
    • (2007) Comput. Speech Lang , vol.21 , Issue.3 , pp. 492-518
    • Schwenk, H.1
  • 13
    • 84910091099 scopus 로고    scopus 로고
    • One billion word benchmark for measuring progress in statistical language modeling
    • Sep
    • C. Chelba et al., "One billion word benchmark for measuring progress in statistical language modeling, " in Proc. Annu. Conf. Int. Speech Commun. Assoc. (INTERSPEECH), Singapore, Sep. 2014, pp. 2635-2639.
    • (2014) Proc. Annu. Conf. Int. Speech Commun. Assoc. (INTERSPEECH), Singapore , pp. 2635-2639
    • Chelba, C.1
  • 14
    • 0003611509 scopus 로고
    • Ph.D. dissertation Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada
    • R. M. Neal, "Bayesian learning for neural networks, " Ph.D. dissertation, Dept. Comput. Sci., Univ. Toronto, Toronto, ON, Canada, 1995.
    • (1995) Bayesian Learning for Neural Networks
    • Neal, R.M.1
  • 15
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • May
    • D. J. C. MacKay, "A practical Bayesian framework for backpropagation networks, " Neural Comput., vol. 4, no. 3, pp. 448-472, May 1992.
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 448-472
    • MacKay, D.J.C.1
  • 18
    • 0028392483 scopus 로고
    • Learning long-Term dependencies with gradient descent is difficult
    • Mar
    • Y. Bengio, P. Simard, and P. Frasconi, "Learning long-Term dependencies with gradient descent is difficult, " IEEE Trans. Neural Netw., vol. 5, no. 2, pp. 157-166, Mar. 1994.
    • (1994) IEEE Trans. Neural Netw , vol.5 , Issue.2 , pp. 157-166
    • Bengio, Y.1    Simard, P.2    Frasconi, P.3
  • 19
    • 85032751472 scopus 로고    scopus 로고
    • Large-vocabulary continuous speech recognition systems: A look at some recent advances
    • Nov
    • G. Saon and J.-T. Chien, "Large-vocabulary continuous speech recognition systems: A look at some recent advances, " IEEE Signal Process. Mag., vol. 29, no. 6, pp. 18-33, Nov. 2012.
    • (2012) IEEE Signal Process. Mag , vol.29 , Issue.6 , pp. 18-33
    • Saon, G.1    Chien, J.-T.2
  • 22
    • 0030181951 scopus 로고    scopus 로고
    • A maximum entropy approach to adaptive statistical language modelling
    • Jul
    • R. Rosenfeld, "A maximum entropy approach to adaptive statistical language modelling, " Comput. Speech Lang., vol. 10, no. 3, pp. 187-228, Jul. 1996.
    • (1996) Comput. Speech Lang , vol.10 , Issue.3 , pp. 187-228
    • Rosenfeld, R.1
  • 23
    • 0141607824 scopus 로고    scopus 로고
    • Latent Dirichlet allocation
    • Jan
    • D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet allocation, " J. Mach. Learn. Res., vol. 3, pp. 993-1022, Jan. 2003.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 993-1022
    • Blei, D.M.1    Ng, A.Y.2    Jordan, M.I.3
  • 25
    • 0031534984 scopus 로고    scopus 로고
    • The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator
    • Apr
    • J. Pitman and M. Yor, "The two-parameter Poisson-Dirichlet distribution derived from a stable subordinator, " Ann. Probab., vol. 25, no. 2, pp. 855-900, Apr. 1997.
    • (1997) Ann. Probab , vol.25 , Issue.2 , pp. 855-900
    • Pitman, J.1    Yor, M.2
  • 26
    • 84930629832 scopus 로고    scopus 로고
    • Hierarchical Pitman-Yor-Dirichlet language model
    • Aug
    • J.-T. Chien, "Hierarchical Pitman-Yor-Dirichlet language model, " IEEE/ACM Trans. Audio, Speech, Language Process., vol. 23, no. 8, pp. 1259-1272, Aug. 2015.
    • (2015) IEEE/ACM Trans. Audio, Speech, Language Process , vol.23 , Issue.8 , pp. 1259-1272
    • Chien, J.-T.1
  • 27
    • 76749091461 scopus 로고    scopus 로고
    • Recursive Bayesian recurrent neural networks for time-series modeling
    • Feb
    • D. T. Mirikitani and N. Nikolaev, "Recursive Bayesian recurrent neural networks for time-series modeling, " IEEE Trans. Neural Netw., vol. 21, no. 2, pp. 262-274, Feb. 2010.
    • (2010) IEEE Trans. Neural Netw , vol.21 , Issue.2 , pp. 262-274
    • Mirikitani, D.T.1    Nikolaev, N.2
  • 29
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Oct
    • D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning representations by back-propagating errors, " Nature, vol. 323, pp. 533-536, Oct. 1986.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 30
    • 0000234257 scopus 로고
    • The evidence framework applied to classification networks
    • Sep
    • D. J. C. MacKay, "The evidence framework applied to classification networks, " Neural Comput., vol. 4, no. 5, pp. 720-736, Sep. 1992.
    • (1992) Neural Comput , vol.4 , Issue.5 , pp. 720-736
    • MacKay, D.J.C.1
  • 35
    • 84954409828 scopus 로고    scopus 로고
    • Laplace group sensing for acoustic models
    • May
    • J.-T. Chien, "Laplace group sensing for acoustic models, " IEEE/ACM Trans. Audio, Speech, Language Process., vol. 23, no. 5, pp. 909-922, May 2015.
    • (2015) IEEE/ACM Trans. Audio, Speech, Language Process , vol.23 , Issue.5 , pp. 909-922
    • Chien, J.-T.1
  • 40
    • 0032050110 scopus 로고    scopus 로고
    • Maximum likelihood linear transformations for HMMbased speech recognition
    • Apr
    • M. J. F. Gales, "Maximum likelihood linear transformations for HMMbased speech recognition, " Comput. Speech Lang., vol. 12, no. 2, pp. 75-98, Apr. 1998.
    • (1998) Comput. Speech Lang , vol.12 , Issue.2 , pp. 75-98
    • Gales, M.J.F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.