메뉴 건너뛰기




Volumn 25, Issue 5, 2016, Pages 2117-2129

Non-Local Auto-Encoder with Collaborative Stabilization for Image Restoration

Author keywords

Image Restoration; Network Stabilization; Non local Auto encoder

Indexed keywords

BRAIN; IMAGE RECONSTRUCTION; LEARNING SYSTEMS; NEURAL NETWORKS; NEUROLOGY; RESTORATION; STABILIZATION;

EID: 84963815828     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2016.2541318     Document Type: Article
Times cited : (84)

References (54)
  • 1
    • 72949109075 scopus 로고    scopus 로고
    • From local kernel to nonlocal multiple-model image denoising
    • V. Katkovnik, A. Foi, K. Egiazarian, J. Astola, "From local kernel to nonlocal multiple-model image denoising, " Int. J. Comput. Vis., vol. 86, no. 1, pp. 1-32, 2010.
    • (2010) Int. J. Comput. Vis , vol.86 , Issue.1 , pp. 1-32
    • Katkovnik, V.1    Foi, A.2    Egiazarian, K.3    Astola, J.4
  • 4
    • 85032751363 scopus 로고    scopus 로고
    • Super-Resolution image Reconstruction: A technical overview
    • May
    • S. C. Park, M. K. Park, M. G. Kang, "Super-resolution image reconstruction: A technical overview, " IEEE Signal Process. Mag., vol. 20, no. 3, pp. 21-36, May 2003.
    • (2003) IEEE Signal Process. Mag , vol.20 , Issue.3 , pp. 21-36
    • Park, S.C.1    Park, M.K.2    Kang, M.G.3
  • 5
    • 85032752336 scopus 로고    scopus 로고
    • Image inpainting: Overview and recent advances
    • Jan.
    • C. Guillemot and O. L. Meur, "Image inpainting: Overview and recent advances, " IEEE Signal Process. Mag., vol. 31, no. 1, pp. 127-144, Jan. 2014.
    • (2014) IEEE Signal Process. Mag , vol.31 , Issue.1 , pp. 127-144
    • Guillemot, C.1    Meur, O.L.2
  • 6
    • 0041737619 scopus 로고    scopus 로고
    • Functional magnetic resonance imaging (fMRI) 'brain reading': Detecting and classifying distributed patterns of fMRI activity in human visual cortex
    • D. D. Cox and R. L. Savoy, "Functional magnetic resonance imaging (fMRI) 'brain reading': Detecting and classifying distributed patterns of fMRI activity in human visual cortex, " Neuroimage, vol. 19, no. 2, pp. 261-270, 2003.
    • (2003) Neuroimage , vol.19 , Issue.2 , pp. 261-270
    • Cox, D.D.1    Savoy, R.L.2
  • 7
    • 69349090197 scopus 로고    scopus 로고
    • Learning deep architectures for AI
    • Y. Bengio, "Learning deep architectures for AI, " Found. Trends Mach. Learn., vol. 2, no. 1, pp. 1-127, 2009.
    • (2009) Found. Trends Mach. Learn , vol.2 , Issue.1 , pp. 1-127
    • Bengio, Y.1
  • 9
    • 78149296699 scopus 로고    scopus 로고
    • Natural image denoising with convolutional networks
    • V. Jain and S. Seung, "Natural image denoising with convolutional networks, " in Proc. NIPS, 2009, pp. 769-776.
    • (2009) Proc. NIPS , pp. 769-776
    • Jain, V.1    Seung, S.2
  • 10
    • 84877728447 scopus 로고    scopus 로고
    • Image denoising and inpainting with deep neural networks
    • J. Xie, L. Xu, E. Chen, "Image denoising and inpainting with deep neural networks, " in Proc. NIPS, 2012, pp. 341-349.
    • (2012) Proc. NIPS , pp. 341-349
    • Xie, J.1    Xu, L.2    Chen, E.3
  • 11
    • 84906484697 scopus 로고    scopus 로고
    • Learning a deep convolutional network for image super-resolution
    • C. Dong, C. C. Loy, K. He, X. Tang, "Learning a deep convolutional network for image super-resolution, " in Proc. ECCV, 2014, pp. 184-199.
    • (2014) Proc. ECCV , pp. 184-199
    • Dong, C.1    Loy, C.C.2    He, K.3    Tang, X.4
  • 12
    • 84866679588 scopus 로고    scopus 로고
    • Image denoising: Can plain neural networks compete with BM3D?
    • H. C. Burger, C. J. Schuler, S. Harmeling, "Image denoising: Can plain neural networks compete with BM3D?" in Proc. CVPR, 2012, pp. 2392-2399.
    • (2012) Proc. CVPR , pp. 2392-2399
    • Burger, H.C.1    Schuler, C.J.2    Harmeling, S.3
  • 13
    • 34547760736 scopus 로고    scopus 로고
    • Image denoising by sparse 3-D transform-domain collaborative filtering
    • Aug.
    • K. Dabov, A. Foi, V. Katkovnik, K. Egiazarian, "Image denoising by sparse 3-D transform-domain collaborative filtering, " IEEE Trans. Image Process., vol. 16, no. 8, pp. 2080-2095, Aug. 2007.
    • (2007) IEEE Trans. Image Process , vol.16 , Issue.8 , pp. 2080-2095
    • Dabov, K.1    Foi, A.2    Katkovnik, V.3    Egiazarian, K.4
  • 14
    • 84886419765 scopus 로고    scopus 로고
    • Learning how to combine internal and external denoising methods
    • H. C. Burger, C. Schuler, S. Harmeling, "Learning how to combine internal and external denoising methods, " in Proc. GCPR, vol. 8142. 2013, pp. 121-130.
    • (2013) Proc. GCPR , vol.8142 , pp. 121-130
    • Burger, H.C.1    Schuler, C.2    Harmeling, S.3
  • 15
    • 84856650948 scopus 로고    scopus 로고
    • From learning models of natural image patches to whole image restoration
    • D. Zoran and Y. Weiss, "From learning models of natural image patches to whole image restoration, " in Proc. ICCV, 2011, pp. 479-486.
    • (2011) Proc ICCV , pp. 479-486
    • Zoran, D.1    Weiss, Y.2
  • 16
    • 84887391162 scopus 로고    scopus 로고
    • A machine learning approach for non-blind image deconvolution
    • C. J. Schuler, H. C. Burger, S. Harmeling, B. Scholkopf, "A machine learning approach for non-blind image deconvolution, " in Proc. CVPR, 2013, pp. 1067-1074.
    • (2013) Proc. CVPR , pp. 1067-1074
    • Schuler, C.J.1    Burger, H.C.2    Harmeling, S.3    Scholkopf, B.4
  • 18
    • 84899024949 scopus 로고    scopus 로고
    • Adaptive multi-column deep neural networks with application to robust image denoising
    • F. Agostinelli, M. R., erson, H. Lee, "Adaptive multi-column deep neural networks with application to robust image denoising, " in Proc. NIPS, 2013, pp. 1493-1501.
    • (2013) Proc. NIPS , pp. 1493-1501
    • Agostinelli, F.1    Erson, M.R.2    Lee, H.3
  • 19
    • 84937878882 scopus 로고    scopus 로고
    • Deep convolutional neural network for image deconvolution
    • L. Xu, J. S. J. Ren, C. Liu, J. Jia, "Deep convolutional neural network for image deconvolution, " in Proc. NIPS, 2014, pp. 1790-1798.
    • (2014) Proc. NIPS , pp. 1790-1798
    • Xu, L.1    Ren, J.S.J.2    Liu, C.3    Jia, J.4
  • 20
    • 84906509108 scopus 로고    scopus 로고
    • Deep network cascade for image super-resolution
    • Z. Cui, H. Chang, S. Shan, B. Zhong, X. Chen, "Deep network cascade for image super-resolution, " in Proc. ECCV, 2014, pp. 49-64.
    • (2014) Proc. ECCV , pp. 49-64
    • Cui, Z.1    Chang, H.2    Shan, S.3    Zhong, B.4    Chen, X.5
  • 21
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • G. E. Hinton and R. R. Salakhutdinov, "Reducing the dimensionality of data with neural networks, " Science, vol. 313, no. 5786, pp. 504-507, 2006.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 22
    • 85161966246 scopus 로고    scopus 로고
    • Sparse feature learning for deep belief networks
    • M. Ranzato, Y.-L. Boureau, Y. LeCun, "Sparse feature learning for deep belief networks, " in Proc. NIPS, 2008, pp. 1185-1192.
    • (2008) Proc. NIPS , pp. 1185-1192
    • Ranzato, M.1    Boureau, Y.-L.2    LeCun, Y.3
  • 23
    • 84923658744 scopus 로고    scopus 로고
    • Block-row sparse multiview multilabel learning for image classification
    • Feb.
    • X. Zhu, X. Li, S. Zhang, "Block-row sparse multiview multilabel learning for image classification, " IEEE Trans. Cybern., vol. 46, no. 2, pp. 450-461, Feb. 2015.
    • (2015) IEEE Trans. Cybern , vol.46 , Issue.2 , pp. 450-461
    • Zhu, X.1    Li, X.2    Zhang, S.3
  • 24
    • 84905046755 scopus 로고    scopus 로고
    • A sparse embedding and least variance encoding approach to hashing
    • Sep.
    • X. Zhu, L. Zhang, Z. Huang, "A sparse embedding and least variance encoding approach to hashing, " IEEE Trans. Image Process., vol. 23, no. 9, pp. 3737-3750, Sep. 2014.
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.9 , pp. 3737-3750
    • Zhu, X.1    Zhang, L.2    Huang, Z.3
  • 25
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Dec.
    • P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.-A. Manzagol, "Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion, " J. Mach. Learn. Res., vol. 11, no. 12, pp. 3371-3408, Dec. 2010.
    • (2010) J. Mach. Learn. Res , vol.11 , Issue.12 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.-A.5
  • 26
    • 24644478715 scopus 로고    scopus 로고
    • A non-local algorithm for image denoising
    • A. Buades, B. Coll, J.-M. Morel, "A non-local algorithm for image denoising, " in Proc. IEEE CVPR, vol. 2. 2005, pp. 60-65.
    • (2005) Proc IEEE CVPR , vol.2 , pp. 60-65
    • Buades, A.1    Coll, B.2    Morel, J.-M.3
  • 28
    • 84873906242 scopus 로고    scopus 로고
    • Nonlocally centralized sparse representation for image restoration
    • Apr.
    • W. Dong, L. Zhang, G. Shi, X. Li, "Nonlocally centralized sparse representation for image restoration, " IEEE Trans. Image Process., vol. 22, no. 4, pp. 1620-1630, Apr. 2013.
    • (2013) IEEE Trans. Image Process , vol.22 , Issue.4 , pp. 1620-1630
    • Dong, W.1    Zhang, L.2    Shi, G.3    Li, X.4
  • 29
    • 84893847895 scopus 로고    scopus 로고
    • Insights into analysis operator learning: From patch-based sparse models to higher order MRFs
    • Mar.
    • Y. Chen, R. Ranftl, T. Pock, "Insights into analysis operator learning: From patch-based sparse models to higher order MRFs, " IEEE Trans. Image Process., vol. 23, no. 3, pp. 1060-1072, Mar. 2014.
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.3 , pp. 1060-1072
    • Chen, Y.1    Ranftl, R.2    Pock, T.3
  • 30
    • 84911360659 scopus 로고    scopus 로고
    • Weighted nuclear norm minimization with application to image denoising
    • S. Gu, L. Zhang, W. Zuo, X. Feng, "Weighted nuclear norm minimization with application to image denoising, " in Proc. CVPR, 2014, pp. 2862-2869.
    • (2014) Proc. CVPR , pp. 2862-2869
    • Gu, S.1    Zhang, L.2    Zuo, W.3    Feng, X.4
  • 31
    • 84911451024 scopus 로고    scopus 로고
    • Shrinkage fields for effective image restoration
    • U. Schmidt and S. Roth, "Shrinkage fields for effective image restoration, " in Proc. CVPR, 2014, pp. 2774-2781.
    • (2014) Proc. CVPR , pp. 2774-2781
    • Schmidt, U.1    Roth, S.2
  • 32
    • 84955309048 scopus 로고    scopus 로고
    • Image Super-Resolution by supervised adaption of patchwise self-similarity from high-resolution image
    • Munich, Germany: Springer International Publishing
    • G. Wu, X. Zhu, Q. Wang, D. Shen, "Image super-resolution by supervised adaption of patchwise self-similarity from high-resolution image, " in Patch-Based Techniques in Medical Imaging. Munich, Germany: Springer International Publishing, 2015, pp. 10-18.
    • (2015) Patch-Based Techniques in Medical Imaging , pp. 10-18
    • Wu, G.1    Zhu, X.2    Wang, Q.3    Shen, D.4
  • 33
    • 78149306047 scopus 로고    scopus 로고
    • 3d object recognition with deep belief nets
    • V. Nair and G. E. Hinton, "3d object recognition with deep belief nets, " in Proc. NIPS, 2009, pp. 1339-1347.
    • (2009) Proc. NIPS , pp. 1339-1347
    • Nair, V.1    Hinton, G.E.2
  • 34
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. E. Hinton, S. Osindero, Y.-W. Teh, "A fast learning algorithm for deep belief nets, " Neural Comput., vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Comput , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 38
    • 0022029165 scopus 로고
    • Adaptive noise smoothing filter for images with signal-dependent noise
    • Mar.
    • D. T. Kuan, A. A. Sawchuk, T. C. Strand, P. Chavel, "Adaptive noise smoothing filter for images with signal-dependent noise, " IEEE Trans. Pattern Anal. Mach. Intell., vol. 7, no. 2, pp. 165-177, Mar. 1985.
    • (1985) IEEE Trans. Pattern Anal. Mach. Intell , vol.7 , Issue.2 , pp. 165-177
    • Kuan, D.T.1    Sawchuk, A.A.2    Strand, T.C.3    Chavel, P.4
  • 39
    • 0002834189 scopus 로고
    • Autoencoders, minimum description length and Helmholtz free energy
    • G. E. Hinton and R. S. Zemel, "Autoencoders, minimum description length and Helmholtz free energy, " in Proc. NIPS, 1994, pp. 3-10.
    • (1994) Proc. NIPS , pp. 3-10
    • Hinton, G.E.1    Zemel, R.S.2
  • 40
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik, M. Stinchcombe, H. White, "Multilayer feedforward networks are universal approximators, " Neural Netw., vol. 2, no. 5, pp. 359-366, 1989.
    • (1989) Neural Netw , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 41
    • 80053460450 scopus 로고    scopus 로고
    • Contractive auto-encoders: Explicit invariance during feature extraction
    • S. Rifai, P. Vincent, X. Muller, X. Glorot, Y. Bengio, "Contractive auto-encoders: Explicit invariance during feature extraction, " in Proc. ICML, 2011, pp. 833-840.
    • (2011) Proc ICML , pp. 833-840
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Glorot, X.4    Bengio, Y.5
  • 43
    • 84973862709 scopus 로고    scopus 로고
    • Convolutional sparse coding for image super-resolution
    • S. Gu, W. Zuo, Q. Xie, D. Meng, X. Feng, L. Zhang, "Convolutional sparse coding for image super-resolution, " in Proc. ICCV, 2015, pp. 1823-1831.
    • (2015) Proc ICCV , pp. 1823-1831
    • Gu, S.1    Zuo, W.2    Xie, Q.3    Meng, D.4    Feng, X.5    Zhang, L.6
  • 44
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • Jul.
    • D. Martin, C. Fowlkes, D. Tal, J. Malik, "A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics, " in Proc. 8th IEEE ICCV, vol. 2. Jul. 2001, pp. 416-423.
    • (2001) Proc. 8th IEEE ICCV , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 45
    • 0016557674 scopus 로고
    • Multidimensional binary search trees used for associative searching
    • J. L. Bentley, "Multidimensional binary search trees used for associative searching, " Commun. ACM, vol. 18, no. 9, pp. 509-517, 1975.
    • (1975) Commun ACM , vol.18 , Issue.9 , pp. 509-517
    • Bentley, J.L.1
  • 48
    • 80052250414 scopus 로고    scopus 로고
    • Adaptive subgradient methods for online learning and stochastic optimization
    • Feb.
    • J. Duchi, E. Hazan, Y. Singer, "Adaptive subgradient methods for online learning and stochastic optimization, " J. Mach. Learn. Res., vol. 12, pp. 2121-2159, Feb. 2011.
    • (2011) J. Mach. Learn. Res , vol.12 , pp. 2121-2159
    • Duchi, J.1    Hazan, E.2    Singer, Y.3
  • 49
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • Dec.
    • M. Elad and M. Aharon, "Image denoising via sparse and redundant representations over learned dictionaries, " IEEE Trans. Image Process., vol. 15, no. 12, pp. 3736-3745, Dec. 2006.
    • (2006) IEEE Trans. Image Process , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 50
    • 84903381835 scopus 로고    scopus 로고
    • Regions of mid-level human visual cortex sensitive to the global coherence of local image patches
    • D. J. Mannion, D. J. Kersten, C. A. Olman, "Regions of mid-level human visual cortex sensitive to the global coherence of local image patches, " J. Cognit. Neurosci., vol. 26, no. 8, pp. 1764-1774, 2014.
    • (2014) J. Cognit. Neurosci , vol.26 , Issue.8 , pp. 1764-1774
    • Mannion, D.J.1    Kersten, D.J.2    Olman, C.A.3
  • 51
    • 78049312324 scopus 로고    scopus 로고
    • Image super-resolution via sparse representation
    • Nov.
    • J. Yang, J. Wright, T. S. Huang, Y. Ma, "Image super-resolution via sparse representation, " IEEE Trans. Image Process., vol. 19, no. 11, pp. 2861-2873, Nov. 2010.
    • (2010) IEEE Trans. Image Process , vol.19 , Issue.11 , pp. 2861-2873
    • Yang, J.1    Wright, J.2    Huang, T.S.3    Ma, Y.4
  • 52
    • 84898792173 scopus 로고    scopus 로고
    • Anchored neighborhood regression for fast example-based super-resolution
    • R. Timofte, V. De, L. Van Gool, "Anchored neighborhood regression for fast example-based super-resolution, " in Proc. ICCV, 2013, pp. 1920-1927.
    • (2013) Proc ICCV , pp. 1920-1927
    • Timofte, R.1    De, V.2    Van Gool, L.3
  • 53
    • 84898409537 scopus 로고    scopus 로고
    • Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding
    • M. Bevilacqua, A. Roumy, C. Guillemot, M. L. Alberi-Morel, "Lowcomplexity single-image super-resolution based on nonnegative neighbor embedding, " in Proc. BMVC, 2012, pp. 1351-13510.
    • (2012) Proc. BMVC , pp. 1351-13510
    • Bevilacqua, M.1    Roumy, A.2    Guillemot, C.3    Alberi-Morel, M.L.4
  • 54
    • 84855655878 scopus 로고    scopus 로고
    • On single image scale-up using sparse-representations
    • Avignon, France: Springer
    • R. Zeyde, M. Elad, M. Protter, "On single image scale-up using sparse-representations, " in Curves and Surfaces. Avignon, France: Springer, 2012, pp. 711-730.
    • (2012) Curves and Surfaces , pp. 711-730
    • Zeyde, R.1    Elad, M.2    Protter, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.