-
1
-
-
84962879533
-
Accelerating deep neural networks on mobile processor with embedded programmable logic
-
IEEE
-
D. Aysegul, J. Jonghoon, G. Vinayak, K. Bharadwaj, C. Alfredo, M. Berin, and C. Eugenio. Accelerating deep neural networks on mobile processor with embedded programmable logic. In NIPS 2013. IEEE, 2013.
-
(2013)
NIPS 2013
-
-
Aysegul, D.1
Jonghoon, J.2
Vinayak, G.3
Bharadwaj, K.4
Alfredo, C.5
Berin, M.6
Eugenio, C.7
-
2
-
-
78149249904
-
A programmable parallel accelerator for learning and classification
-
ACM
-
S. Cadambi, A. Majumdar, M. Becchi, S. Chakradhar, and H. P. Graf. A programmable parallel accelerator for learning and classification. In Proceedings of the 19th international conference on Parallel architectures and compilation techniques, pages 273-284. ACM, 2010.
-
(2010)
Proceedings of the 19th International Conference on Parallel Architectures and Compilation Techniques
, pp. 273-284
-
-
Cadambi, S.1
Majumdar, A.2
Becchi, M.3
Chakradhar, S.4
Graf, H.P.5
-
3
-
-
77955007393
-
A dynamically configurable coprocessor for convolutional neural networks
-
ACM
-
S. Chakradhar, M. Sankaradas, V. Jakkula, and S. Cadambi. A dynamically configurable coprocessor for convolutional neural networks. In ACM SIGARCH Computer Architecture News, volume 38, pages 247-257. ACM, 2010.
-
(2010)
ACM SIGARCH Computer Architecture News
, vol.38
, pp. 247-257
-
-
Chakradhar, S.1
Sankaradas, M.2
Jakkula, V.3
Cadambi, S.4
-
4
-
-
84897780584
-
Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning
-
Feb.
-
T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam. Diannao: A small-footprint high-throughput accelerator for ubiquitous machine-learning. SIGPLAN Not., 49(4):269-284, Feb. 2014.
-
(2014)
SIGPLAN Not.
, vol.49
, Issue.4
, pp. 269-284
-
-
Chen, T.1
Du, Z.2
Sun, N.3
Wang, J.4
Wu, C.5
Chen, Y.6
Temam, O.7
-
6
-
-
70450060046
-
Cnp: An FPGA-based processor for convolutional networks
-
IEEE
-
C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. Cnp: An fpga-based processor for convolutional networks. In Field Programmable Logic and Applications, 2009. FPL 2009. International Conference on, pages 32-37. IEEE, 2009.
-
(2009)
Field Programmable Logic and Applications, 2009. FPL 2009. International Conference on
, pp. 32-37
-
-
Farabet, C.1
Poulet, C.2
Han, J.Y.3
LeCun, Y.4
-
8
-
-
84870183903
-
3d convolutional neural networks for human action recognition
-
Jan.
-
S. Ji, W. Xu, M. Yang, and K. Yu. 3d convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell., 35(1):221-231, Jan. 2013.
-
(2013)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.35
, Issue.1
, pp. 221-231
-
-
Ji, S.1
Xu, W.2
Yang, M.3
Yu, K.4
-
9
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
F. Pereira C. Burges, L. Bottou, and K. Weinberger, editors, Curran Associates, Inc.
-
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C. Burges, L. Bottou, and K. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097-1105. Curran Associates, Inc., 2012.
-
(2012)
Advances in Neural Information Processing Systems
, vol.25
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
10
-
-
34547967782
-
An empirical evaluation of deep architectures on problems with many factors of variation
-
New York, NY, USA ACM
-
H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio. An empirical evaluation of deep architectures on problems with many factors of variation. In Proceedings of the 24th International Conference on Machine Learning, ICML '07, pages 473-480, New York, NY, USA, 2007. ACM.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning, ICML '07
, pp. 473-480
-
-
Larochelle, H.1
Erhan, D.2
Courville, A.3
Bergstra, J.4
Bengio, Y.5
-
11
-
-
0032203257
-
Gradient-based learning applied to document recognition
-
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
-
(1998)
Proceedings of the IEEE
, vol.86
, Issue.11
, pp. 2278-2324
-
-
LeCun, Y.1
Bottou, L.2
Bengio, Y.3
Haffner, P.4
-
12
-
-
84892533708
-
Memory-centric accelerator design for convolutional neural networks
-
IEEE
-
M. Peemen, A. A. Setio, B. Mesman, and H. Corporaal. Memory-centric accelerator design for convolutional neural networks. In Computer Design (ICCD), 2013 IEEE 31st International Conference on, pages 13-19. IEEE, 2013.
-
(2013)
Computer Design (ICCD), 2013 IEEE 31st International Conference on
, pp. 13-19
-
-
Peemen, M.1
Setio, A.A.2
Mesman, B.3
Corporaal, H.4
-
13
-
-
84874534162
-
Polyhedral-based data reuse optimization for configurable computing
-
New York, NY, USA. ACM
-
L.-N. Pouchet, P. Zhang, P. Sadayappan, and J. Cong. Polyhedral-based data reuse optimization for configurable computing. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA '13, pages 29-38, New York, NY, USA, 2013. ACM.
-
(2013)
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA '13
, pp. 29-38
-
-
Pouchet, L.-N.1
Zhang, P.2
Sadayappan, P.3
Cong, J.4
-
14
-
-
71049121470
-
A massively parallel coprocessor for convolutional neural networks
-
IEEE
-
M. Sankaradas, V. Jakkula, S. Cadambi, S. Chakradhar, I. Durdanovic, E. Cosatto, and H. P. Graf. A massively parallel coprocessor for convolutional neural networks. In Application-specific Systems, Architectures and Processors, 2009. ASAP 2009. 20th IEEE International Conference on, pages 53-60. IEEE, 2009.
-
(2009)
Application-specific Systems, Architectures and Processors, 2009. ASAP 2009. 20th IEEE International Conference on
, pp. 53-60
-
-
Sankaradas, M.1
Jakkula, V.2
Cadambi, S.3
Chakradhar, S.4
Durdanovic, I.5
Cosatto, E.6
Graf, H.P.7
-
15
-
-
65949107549
-
Rooine: An insightful visual performance model for multicore architectures
-
Apr.
-
S. Williams, A. Waterman, and D. Patterson. Rooine: An insightful visual performance model for multicore architectures. Commun. ACM, 52(4):65-76, Apr. 2009.
-
(2009)
Commun. ACM
, vol.52
, Issue.4
, pp. 65-76
-
-
Williams, S.1
Waterman, A.2
Patterson, D.3
-
16
-
-
84874545557
-
Improving high level synthesis optimization opportunity through polyhedral transformations
-
New York, NY, USA. ACM
-
W. Zuo, Y. Liang, P. Li, K. Rupnow, D. Chen, and J. Cong. Improving high level synthesis optimization opportunity through polyhedral transformations. In Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA '13, pages 9-18, New York, NY, USA, 2013. ACM.
-
(2013)
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays, FPGA '13
, pp. 9-18
-
-
Zuo, W.1
Liang, Y.2
Li, P.3
Rupnow, K.4
Chen, D.5
Cong, J.6
|