메뉴 건너뛰기




Volumn 2016-January, Issue , 2016, Pages 639-648

SimNest: Social media nested epidemic simulation via online semi-supervised deep learning

Author keywords

Deep learning; Epidemic simulation; Twitter

Indexed keywords

DATA MINING; DISEASES; E-LEARNING; EPIDEMIOLOGY; HEALTH RISKS; ITERATIVE METHODS; KNOWLEDGE BASED SYSTEMS; LEARNING ALGORITHMS; SOCIAL NETWORKING (ONLINE);

EID: 84963593976     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2015.39     Document Type: Conference Paper
Times cited : (63)

References (28)
  • 3
    • 0018656345 scopus 로고
    • Population biology of infectious diseases: Part i
    • R. M. Anderson and R. M. May. Population biology of infectious diseases: Part i. Nature, (280):361-7, 1979
    • (1979) Nature , Issue.280 , pp. 361-367
    • Anderson, R.M.1    May, R.M.2
  • 5
    • 70350782519 scopus 로고    scopus 로고
    • Episimdemics: An efficient algorithm for simulating the spread of infectious disease over large realistic social networks
    • Nov
    • C. Barrett, K. Bisset, S. Eubank, X. Feng, and M. Marathe. Episimdemics: An efficient algorithm for simulating the spread of infectious disease over large realistic social networks. In ICS, pages 1-12, Nov. 2008
    • (2008) ICS , pp. 1-12
    • Barrett, C.1    Bisset, K.2    Eubank, S.3    Feng, X.4    Marathe, M.5
  • 6
    • 84907020102 scopus 로고    scopus 로고
    • Isis: A networked-epidemiology based pervasive web app for infectious disease pandemic planning and response
    • ACM
    • R. Beckman, K. R. Bisset, J. Chen, B. Lewis, M. Marathe, and P. Stretz. Isis: A networked-epidemiology based pervasive web app for infectious disease pandemic planning and response. In KDD, pages 1847-1856. ACM, 2014
    • (2014) KDD , pp. 1847-1856
    • Beckman, R.1    Bisset, K.R.2    Chen, J.3    Lewis, B.4    Marathe, M.5    Stretz, P.6
  • 8
    • 70449729951 scopus 로고    scopus 로고
    • Epifast: A fast algorithm for large scale realistic epidemic simulations on distributed memory systems
    • K. Bisset, J. Chen, X. Feng, V. S. A. Kumar, and M. Marathe. Epifast: A fast algorithm for large scale realistic epidemic simulations on distributed memory systems. In ICS, pages 430-439, 2009
    • (2009) ICS , pp. 430-439
    • Bisset, K.1    Chen, J.2    Feng, X.3    Kumar, V.S.A.4    Marathe, M.5
  • 9
    • 84896063387 scopus 로고    scopus 로고
    • Towards understanding global spread of disease from everyday interpersonal interactions
    • AAAI Press
    • S. Brennan, A. Sadilek, and H. Kautz. Towards understanding global spread of disease from everyday interpersonal interactions. In IJCAI, pages 2783-2789. AAAI Press, 2013
    • (2013) IJCAI , pp. 2783-2789
    • Brennan, S.1    Sadilek, A.2    Kautz, H.3
  • 10
    • 84952709933 scopus 로고    scopus 로고
    • Accessed May 31
    • CDC. Fluview interactive. Accessed May 31, 2015. http://www.cdc.gov/flu/weekly/fluviewinteractive.htm
    • (2015) Fluview Interactive
  • 11
    • 84936930986 scopus 로고    scopus 로고
    • Flu gone viral: Syndromic surveillance of flu on Twitter using temporal topic models
    • IEEE
    • L. Chen, K. T. Hossain, P. Butler, N. Ramakrishnan, and B. A. Prakash. Flu gone viral: Syndromic surveillance of flu on Twitter using temporal topic models. In ICDM, pages 2783-2789. IEEE, 2014
    • (2014) ICDM , pp. 2783-2789
    • Chen, L.1    Hossain, K.T.2    Butler, P.3    Ramakrishnan, N.4    Prakash, B.A.5
  • 12
    • 84883111635 scopus 로고    scopus 로고
    • Omg u got flu? Analysis of shared health messages for bio-surveillance
    • N. Collier, N. T. Son, and N. M. Nguyen. Omg u got flu? analysis of shared health messages for bio-surveillance. J. Biomedical Semantics, 2(5):S9, 2011
    • (2011) J. Biomedical Semantics , vol.2 , Issue.5 , pp. S9
    • Collier, N.1    Son, N.T.2    Nguyen, N.M.3
  • 13
    • 79955711378 scopus 로고    scopus 로고
    • Disease transmission in territorial populations: The small-world network of serengeti lions
    • M. E. Craft, E. Volz, C. Packer, and L. A. Meyers. Disease transmission in territorial populations: the small-world network of serengeti lions. Journal of the Royal Society Interface, 8(59):776-786, 2011
    • (2011) Journal of the Royal Society Interface , vol.8 , Issue.59 , pp. 776-786
    • Craft, M.E.1    Volz, E.2    Packer, C.3    Meyers, L.A.4
  • 16
    • 84866748157 scopus 로고    scopus 로고
    • A network-based analysis of the 1861 hagelloch measles data
    • C. Groendyke, D. Welch, and D. R. Hunter. A network-based analysis of the 1861 hagelloch measles data. Biometrics, 68(3):755-765, 2012
    • (2012) Biometrics , vol.68 , Issue.3 , pp. 755-765
    • Groendyke, C.1    Welch, D.2    Hunter, D.R.3
  • 17
    • 84877696406 scopus 로고    scopus 로고
    • Prediction of infectious disease spread using Twitter: A case of influenza
    • IEEE
    • H. Hirose and L. Wang. Prediction of infectious disease spread using Twitter: A case of influenza. In PAAP, pages 100-105. IEEE, 2012
    • (2012) PAAP , pp. 100-105
    • Hirose, H.1    Wang, L.2
  • 18
    • 84868292136 scopus 로고    scopus 로고
    • A new age of public health: Identifying disease outbreaks by analyzing tweets
    • M. Krieck, J. Dreesman, L. Otrusina, and K. Denecke. A new age of public health: Identifying disease outbreaks by analyzing tweets. In WebSci, 2011
    • (2011) WebSci
    • Krieck, M.1    Dreesman, J.2    Otrusina, L.3    Denecke, K.4
  • 19
    • 84923276281 scopus 로고    scopus 로고
    • Separating fact from fear: Tracking flu infections on Twitter
    • A. Lamb, M. J. Paul, and M. Dredze. Separating fact from fear: Tracking flu infections on Twitter. In HLT-NAACL, pages 789-795, 2013
    • (2013) HLT-NAACL , pp. 789-795
    • Lamb, A.1    Paul, M.J.2    Dredze, M.3
  • 21
    • 84963617516 scopus 로고    scopus 로고
    • Accessed May 31
    • PAHO. Paho interactive. Accessed May 31, 2015. www.paho.org/hq
    • (2015) Paho Interactive
  • 22
    • 84893320514 scopus 로고    scopus 로고
    • A model for mining public health topics from Twitter
    • M. J. Paul and M. Dredze. A model for mining public health topics from Twitter. Health, 11:16-6, 2012
    • (2012) Health , vol.11 , pp. 16-26
    • Paul, M.J.1    Dredze, M.2
  • 25
    • 84925999464 scopus 로고    scopus 로고
    • Accessed May 29
    • WHO. Ebola data and statistics. Accessed May 29, 2015. http://apps.who.int/gho/data/view.ebola-sitrep.ebolasummary-latest
    • (2015) Ebola Data and Statistics
  • 26
    • 84954152162 scopus 로고    scopus 로고
    • Accessed May 15
    • WHO. Influenza (season) fact sheet. Accessed May 15, 2015. http://www.who.int/mediacentre/factsheets/fs211/en
    • (2015) Influenza (Season) Fact Sheet
  • 28
    • 84961943223 scopus 로고    scopus 로고
    • Spatiotemporal event forecasting in social media
    • SIAM
    • L. Zhao, F. Chen, C.-T. Lu, and N. Ramakrishnan. Spatiotemporal event forecasting in social media. In SDM 15, pages 963-971. SIAM, 2015
    • (2015) SDM , vol.15 , pp. 963-971
    • Zhao, L.1    Chen, F.2    Lu, C.-T.3    Ramakrishnan, N.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.