-
1
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446–450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
Endo, T.A.4
Nakato, G.5
Takahashi, D.6
-
2
-
-
53649100675
-
ATP drives lamina propria T(H)17 cell differentiation
-
Atarashi K, Nishimura J, Shima T, Umesaki Y, Yamamoto M, Onoue M et al. ATP drives lamina propria T(H)17 cell differentiation. Nature 2008; 455: 808–812.
-
(2008)
Nature
, vol.455
, pp. 808-812
-
-
Atarashi, K.1
Nishimura, J.2
Shima, T.3
Umesaki, Y.4
Yamamoto, M.5
Onoue, M.6
-
3
-
-
77958170401
-
Intestinal goblet cells and mucins in health and disease: Recent insights and progress
-
Kim YS, Ho SB. Intestinal goblet cells and mucins in health and disease: recent insights and progress. Curr Gastroenterol Rep 2010; 12: 319–330.
-
(2010)
Curr Gastroenterol Rep
, vol.12
, pp. 319-330
-
-
Kim, Y.S.1
Ho, S.B.2
-
4
-
-
75749122181
-
Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells
-
Moro K, Yamada T, Tanabe M, Takeuchi T, Ikawa T, Kawamoto H et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature 2010; 463: 540–544.
-
(2010)
Nature
, vol.463
, pp. 540-544
-
-
Moro, K.1
Yamada, T.2
Tanabe, M.3
Takeuchi, T.4
Ikawa, T.5
Kawamoto, H.6
-
5
-
-
77954926597
-
Systemically dispersed innate IL-13-expressing cells in type 2 immunity
-
Price AE, Liang HE, Sullivan BM, Reinhardt RL, Eisley CJ, Erle DJ et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc Natl Acad Sci USA 2010; 107: 11489–11494.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 11489-11494
-
-
Price, A.E.1
Liang, H.E.2
Sullivan, B.M.3
Reinhardt, R.L.4
Eisley, C.J.5
Erle, D.J.6
-
6
-
-
0034029729
-
Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon
-
Shimotoyodome A, Meguro S, Hase T, Tokimitsu I, Sakata T. Short chain fatty acids but not lactate or succinate stimulate mucus release in the rat colon. Comp Biochem Physiol A Mol Integr Physiol 2000; 125: 525–531.
-
(2000)
Comp Biochem Physiol a Mol Integr Physiol
, vol.125
, pp. 525-531
-
-
Shimotoyodome, A.1
Meguro, S.2
Hase, T.3
Tokimitsu, I.4
Sakata, T.5
-
7
-
-
84896691062
-
NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion
-
Wlodarska M, Thaiss CA, Nowarski R, Henao-Mejia J, Zhang JP, Brown EM et al. NLRP6 inflammasome orchestrates the colonic host-microbial interface by regulating goblet cell mucus secretion. Cell 2014; 156: 1045–1059.
-
(2014)
Cell
, vol.156
, pp. 1045-1059
-
-
Wlodarska, M.1
Thaiss, C.A.2
Nowarski, R.3
Henao-Mejia, J.4
Zhang, J.P.5
Brown, E.M.6
-
8
-
-
54449083567
-
The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
-
Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 2008; 105: 15064–15069.
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, pp. 15064-15069
-
-
Johansson, M.E.1
Phillipson, M.2
Petersson, J.3
Velcich, A.4
Holm, L.5
Hansson, G.C.6
-
9
-
-
84995739780
-
A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility
-
Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 2016; 167: 1339–1353 e21.
-
(2016)
Cell
, vol.167
, pp. 1339-1353
-
-
Desai, M.S.1
Seekatz, A.M.2
Koropatkin, N.M.3
Kamada, N.4
Hickey, C.A.5
Wolter, M.6
-
10
-
-
0842304588
-
Expression and regulation of antimicrobial peptides in the gastrointestinal tract
-
Cunliffe RN, Mahida YR. Expression and regulation of antimicrobial peptides in the gastrointestinal tract. J Leukoc Biol 2004; 75: 49–58.
-
(2004)
J Leukoc Biol
, vol.75
, pp. 49-58
-
-
Cunliffe, R.N.1
Mahida, Y.R.2
-
11
-
-
84963611503
-
Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia
-
Okumura R, Kurakawa T, Nakano T, Kayama H, Kinoshita M, Motooka D et al. Lypd8 promotes the segregation of flagellated microbiota and colonic epithelia. Nature 2016; 532: 117–121.
-
(2016)
Nature
, vol.532
, pp. 117-121
-
-
Okumura, R.1
Kurakawa, T.2
Nakano, T.3
Kayama, H.4
Kinoshita, M.5
Motooka, D.6
-
12
-
-
84894263389
-
Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon
-
Shimada Y, Kinoshita M, Harada K, Mizutani M, Masahata K, Kayama H et al. Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS ONE 2013; 8: e80604.
-
(2013)
Plos ONE
, vol.8
-
-
Shimada, Y.1
Kinoshita, M.2
Harada, K.3
Mizutani, M.4
Masahata, K.5
Kayama, H.6
-
13
-
-
84907597269
-
Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4
-
Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP et al. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity 2014; 41: 296–310.
-
(2014)
Immunity
, vol.41
, pp. 296-310
-
-
Venkatesh, M.1
Mukherjee, S.2
Wang, H.3
Li, H.4
Sun, K.5
Benechet, A.P.6
-
14
-
-
0034252293
-
Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria
-
Ayabe T, Satchell DP, Wilson CL, Parks WC, Selsted ME, Ouellette AJ. Secretion of microbicidal alpha-defensins by intestinal Paneth cells in response to bacteria. Nat Immunol 2000; 1: 113–118.
-
(2000)
Nat Immunol
, vol.1
, pp. 113-118
-
-
Ayabe, T.1
Satchell, D.P.2
Wilson, C.L.3
Parks, W.C.4
Selsted, M.E.5
Ouellette, A.J.6
-
15
-
-
80054122238
-
The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine
-
Vaishnava S, Yamamoto M, Severson KM, Ruhn KA, Yu X, Koren O et al. The antibacterial lectin RegIIIgamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011; 334: 255–258.
-
(2011)
Science
, vol.334
, pp. 255-258
-
-
Vaishnava, S.1
Yamamoto, M.2
Severson, K.M.3
Ruhn, K.A.4
Yu, X.5
Koren, O.6
-
16
-
-
14544282377
-
Antimicrobial peptides: Pore formers or metabolic inhibitors in bacteria?
-
Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat Rev Microbiol 2005; 3: 238–250.
-
(2005)
Nat Rev Microbiol
, vol.3
, pp. 238-250
-
-
Brogden, K.A.1
-
17
-
-
0033214433
-
Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense
-
Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, Lopez-Boado YS, Stratman JL et al. Regulation of intestinal alpha-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 1999; 286: 113–117.
-
(1999)
Science
, vol.286
, pp. 113-117
-
-
Wilson, C.L.1
Ouellette, A.J.2
Satchell, D.P.3
Ayabe, T.4
Lopez-Boado, Y.S.5
Stratman, J.L.6
-
18
-
-
33748039462
-
Symbiotic bacteria direct expression of an intestinal bactericidal lectin
-
Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006; 313: 1126–1130.
-
(2006)
Science
, vol.313
, pp. 1126-1130
-
-
Cash, H.L.1
Whitham, C.V.2
Behrendt, C.L.3
Hooper, L.V.4
-
19
-
-
84892373963
-
Antibacterial membrane attack by a pore-forming intestinal C-type lectin
-
Mukherjee S, Zheng H, Derebe MG, Callenberg KM, Partch CL, Rollins D et al. Antibacterial membrane attack by a pore-forming intestinal C-type lectin. Nature 2014; 505: 103–107.
-
(2014)
Nature
, vol.505
, pp. 103-107
-
-
Mukherjee, S.1
Zheng, H.2
Derebe, M.G.3
Callenberg, K.M.4
Partch, C.L.5
Rollins, D.6
-
20
-
-
13244292161
-
Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract
-
Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005; 307: 731–734.
-
(2005)
Science
, vol.307
, pp. 731-734
-
-
Kobayashi, K.S.1
Chamaillard, M.2
Ogura, Y.3
Henegariu, O.4
Inohara, N.5
Nunez, G.6
-
21
-
-
33749318470
-
Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides
-
Liang SC, Tan XY, Luxenberg DP, Karim R, Dunussi-Joannopoulos K, Collins M et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 2006; 203: 2271–2279.
-
(2006)
J Exp Med
, vol.203
, pp. 2271-2279
-
-
Liang, S.C.1
Tan, X.Y.2
Luxenberg, D.P.3
Karim, R.4
Dunussi-Joannopoulos, K.5
Collins, M.6
-
22
-
-
84918522920
-
IL-6 stimulates intestinal epithelial proliferation and repair after injury
-
Kuhn KA, Manieri NA, Liu TC, Stappenbeck TS. IL-6 stimulates intestinal epithelial proliferation and repair after injury. PLoS ONE 2014; 9: e114195.
-
(2014)
Plos ONE
, vol.9
-
-
Kuhn, K.A.1
Manieri, N.A.2
Liu, T.C.3
Stappenbeck, T.S.4
-
23
-
-
84867660831
-
IFN-gamma and TNF-alpha-induced GBP-1 inhibits epithelial cell proliferation through suppression of beta-catenin/TCF signaling
-
Capaldo CT, Beeman N, Hilgarth RS, Nava P, Louis NA, Naschberger E et al. IFN-gamma and TNF-alpha-induced GBP-1 inhibits epithelial cell proliferation through suppression of beta-catenin/TCF signaling. Mucosal Immunol 2012; 5: 681–690.
-
(2012)
Mucosal Immunol
, vol.5
, pp. 681-690
-
-
Capaldo, C.T.1
Beeman, N.2
Hilgarth, R.S.3
Nava, P.4
Louis, N.A.5
Naschberger, E.6
-
24
-
-
11844279745
-
Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury
-
Pull SL, Doherty JM, Mills JC, Gordon JI, Stappenbeck TS. Activated macrophages are an adaptive element of the colonic epithelial progenitor niche necessary for regenerative responses to injury. Proc Natl Acad Sci USA 2005; 102: 99–104.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 99-104
-
-
Pull, S.L.1
Doherty, J.M.2
Mills, J.C.3
Gordon, J.I.4
Stappenbeck, T.S.5
-
25
-
-
58549094584
-
Efficient colonic mucosal wound repair requires Trem2 signaling
-
Seno H, Miyoshi H, Brown SL, Geske MJ, Colonna M, Stappenbeck TS. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl Acad Sci USA 2009; 106: 256–261.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 256-261
-
-
Seno, H.1
Miyoshi, H.2
Brown, S.L.3
Geske, M.J.4
Colonna, M.5
Stappenbeck, T.S.6
-
26
-
-
23244455992
-
Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution
-
Heller F, Florian P, Bojarski C, Richter J, Christ M, Hillenbrand B et al. Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology 2005; 129: 550–564.
-
(2005)
Gastroenterology
, vol.129
, pp. 550-564
-
-
Heller, F.1
Florian, P.2
Bojarski, C.3
Richter, J.4
Christ, M.5
Hillenbrand, B.6
-
27
-
-
54349114505
-
Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: Effect of pro-inflammatory interleukin-13 on epithelial cell function
-
Heller F, Fromm A, Gitter AH, Mankertz J, Schulzke JD. Epithelial apoptosis is a prominent feature of the epithelial barrier disturbance in intestinal inflammation: effect of pro-inflammatory interleukin-13 on epithelial cell function. Mucosal Immunol 2008; 1 (Suppl 1): S58–S61.
-
(2008)
Mucosal Immunol
, vol.1
, pp. S58-S61
-
-
Heller, F.1
Fromm, A.2
Gitter, A.H.3
Mankertz, J.4
Schulzke, J.D.5
-
28
-
-
84992702727
-
Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases
-
Zhang M, Yang XJ. Effects of a high fat diet on intestinal microbiota and gastrointestinal diseases. World J Gastroenterol 2016; 22: 8905–8909.
-
(2016)
World J Gastroenterol
, vol.22
, pp. 8905-8909
-
-
Zhang, M.1
Yang, X.J.2
-
29
-
-
84892894991
-
Antibiotic-induced shifts in the mouse gut microbiome and metabo-lome increase susceptibility to Clostridium difficile infection
-
Theriot CM, Koenigsknecht MJ, Carlson PE Jr, Hatton GE, Nelson AM, Li B et al. Antibiotic-induced shifts in the mouse gut microbiome and metabo-lome increase susceptibility to Clostridium difficile infection. Nat Commun 2014; 5: 3114.
-
(2014)
Nat Commun
, vol.5
, pp. 3114
-
-
Theriot, C.M.1
Koenigsknecht, M.J.2
Carlson, P.E.3
Hatton, G.E.4
Nelson, A.M.5
Li, B.6
-
30
-
-
84908302963
-
Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis
-
Thaiss CA, Zeevi D, Levy M, Zilberman-Schapira G, Suez J, Tengeler AC et al. Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 2014; 159: 514–529.
-
(2014)
Cell
, vol.159
, pp. 514-529
-
-
Thaiss, C.A.1
Zeevi, D.2
Levy, M.3
Zilberman-Schapira, G.4
Suez, J.5
Tengeler, A.C.6
-
31
-
-
85002680324
-
Antibiotic effects on gut microbiota and metabolism are host dependent
-
Fujisaka S, Ussar S, Clish C, Devkota S, Dreyfuss JM, Sakaguchi M et al. Antibiotic effects on gut microbiota and metabolism are host dependent. J Clin Invest 2016; 126: 4430–4443.
-
(2016)
J Clin Invest
, vol.126
, pp. 4430-4443
-
-
Fujisaka, S.1
Ussar, S.2
Clish, C.3
Devkota, S.4
Dreyfuss, J.M.5
Sakaguchi, M.6
-
32
-
-
77950202391
-
Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium
-
Bailey MT, Dowd SE, Parry NM, Galley JD, Schauer DB, Lyte M. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by Citrobacter rodentium. Infect Immun 2010; 78: 1509–1519.
-
(2010)
Infect Immun
, vol.78
, pp. 1509-1519
-
-
Bailey, M.T.1
Dowd, S.E.2
Parry, N.M.3
Galley, J.D.4
Schauer, D.B.5
Lyte, M.6
-
33
-
-
85010200534
-
Intestinal microbial communities associated with acute enteric infections and disease recovery
-
Singh P, Teal TK, Marsh TL, Tiedje JM, Mosci R, Jernigan K et al. Intestinal microbial communities associated with acute enteric infections and disease recovery. Microbiome 2015; 3: 45.
-
(2015)
Microbiome
, vol.3
, pp. 45
-
-
Singh, P.1
Teal, T.K.2
Marsh, T.L.3
Tiedje, J.M.4
Mosci, R.5
Jernigan, K.6
-
34
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009; 139: 485–498.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
Atarashi, K.2
Manel, N.3
Brodie, E.L.4
Shima, T.5
Karaoz, U.6
-
35
-
-
84943639694
-
Th17 cell induction by adhesion of microbes to intestinal epithelial cells
-
Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S et al. Th17 cell induction by adhesion of microbes to intestinal epithelial cells. Cell 2015; 163: 367–380.
-
(2015)
Cell
, vol.163
, pp. 367-380
-
-
Atarashi, K.1
Tanoue, T.2
Ando, M.3
Kamada, N.4
Nagano, Y.5
Narushima, S.6
-
36
-
-
84943638660
-
An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses
-
Sano T, Huang W, Hall JA, Yang Y, Chen A, Gavzy SJ et al. An IL-23R/IL-22 circuit regulates epithelial serum amyloid A to promote local effector Th17 responses. Cell 2015; 163: 381–393.
-
(2015)
Cell
, vol.163
, pp. 381-393
-
-
Sano, T.1
Huang, W.2
Hall, J.A.3
Yang, Y.4
Chen, A.5
Gavzy, S.J.6
-
37
-
-
84907208430
-
Innate lymphoid cells regulate intestinal epithelial cell glycosylation
-
Goto Y, Obata T, Kunisawa J, Sato S, Ivanov II, Lamichhane A et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 2014; 345: 1254009.
-
(2014)
Science
, vol.345
-
-
Goto, Y.1
Obata, T.2
Kunisawa, J.3
Sato, S.4
Ivanov, I.I.5
Lamichhane, A.6
-
38
-
-
84908075358
-
Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen
-
Pham TA, Clare S, Goulding D, Arasteh JM, Stares MD, Browne HP et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 2014; 16: 504–516.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 504-516
-
-
Pham, T.A.1
Clare, S.2
Goulding, D.3
Arasteh, J.M.4
Stares, M.D.5
Browne, H.P.6
-
39
-
-
84908403149
-
Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness
-
Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV et al. Rapid fucosylation of intestinal epithelium sustains host–commensal symbiosis in sickness. Nature 2014; 514: 638–641.
-
(2014)
Nature
, vol.514
, pp. 638-641
-
-
Pickard, J.M.1
Maurice, C.F.2
Kinnebrew, M.A.3
Abt, M.C.4
Schenten, D.5
Golovkina, T.V.6
-
40
-
-
0038442102
-
TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttran-scriptional mechanism
-
Yu Y, Zeng H, Lyons S, Carlson A, Merlin D, Neish AS et al. TLR5-mediated activation of p38 MAPK regulates epithelial IL-8 expression via posttran-scriptional mechanism. Am J Physiol Gastrointest Liver Physiol 2003; 285: G282–G290.
-
(2003)
Am J Physiol Gastrointest Liver Physiol
, vol.285
, pp. G282-G290
-
-
Yu, Y.1
Zeng, H.2
Lyons, S.3
Carlson, A.4
Merlin, D.5
Neish, A.S.6
-
41
-
-
0035881675
-
Cutting edge: Bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression
-
Gewirtz AT, Navas TA, Lyons S, Godowski PJ, Madara JL. Cutting edge: bacterial flagellin activates basolaterally expressed TLR5 to induce epithelial proinflammatory gene expression. J Immunol 2001; 167: 1882–1885.
-
(2001)
J Immunol
, vol.167
, pp. 1882-1885
-
-
Gewirtz, A.T.1
Navas, T.A.2
Lyons, S.3
Godowski, P.J.4
Madara, J.L.5
-
42
-
-
84954561117
-
Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites
-
Gerbe F, Sidot E, Smyth DJ, Ohmoto M, Matsumoto I, Dardalhon V et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 2016; 529: 226–230.
-
(2016)
Nature
, vol.529
, pp. 226-230
-
-
Gerbe, F.1
Sidot, E.2
Smyth, D.J.3
Ohmoto, M.4
Matsumoto, I.5
Dardalhon, V.6
-
43
-
-
84958767810
-
Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut
-
Howitt MR, Lavoie S, Michaud M, Blum AM, Tran SV, Weinstock JV et al. Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science 2016; 351: 1329–1333.
-
(2016)
Science
, vol.351
, pp. 1329-1333
-
-
Howitt, M.R.1
Lavoie, S.2
Michaud, M.3
Blum, A.M.4
Tran, S.V.5
Weinstock, J.V.6
-
44
-
-
84954286513
-
Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit
-
von Moltke J, Ji M, Liang HE, Locksley RM. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 2016; 529: 221–225.
-
(2016)
Nature
, vol.529
, pp. 221-225
-
-
von Moltke, J.1
Ji, M.2
Liang, H.E.3
Locksley, R.M.4
-
45
-
-
42149179961
-
IL-33, a potent inducer of adaptive immunity to intestinal nematodes
-
Humphreys NE, Xu D, Hepworth MR, Liew FY, Grencis RK. IL-33, a potent inducer of adaptive immunity to intestinal nematodes. J Immunol 2008; 180: 2443–2449.
-
(2008)
J Immunol
, vol.180
, pp. 2443-2449
-
-
Humphreys, N.E.1
Xu, D.2
Hepworth, M.R.3
Liew, F.Y.4
Grencis, R.K.5
-
46
-
-
84870527455
-
Interleukin-33 ameliorates experimental colitis through promoting Th2/Foxp3(+) regulatory T-cell responses in mice
-
Duan L, Chen J, Zhang H, Yang H, Zhu P, Xiong A et al. Interleukin-33 ameliorates experimental colitis through promoting Th2/Foxp3(+) regulatory T-cell responses in mice. Mol Med 2012; 18: 753–761.
-
(2012)
Mol Med
, vol.18
, pp. 753-761
-
-
Duan, L.1
Chen, J.2
Zhang, H.3
Yang, H.4
Zhu, P.5
Xiong, A.6
-
47
-
-
84906571227
-
The alarmin IL-33 promotes regulatory T-cell function in the intestine
-
Schiering C, Krausgruber T, Chomka A, Frohlich A, Adelmann K, Wohlfert EA et al. The alarmin IL-33 promotes regulatory T-cell function in the intestine. Nature 2014; 513: 564–568.
-
(2014)
Nature
, vol.513
, pp. 564-568
-
-
Schiering, C.1
Krausgruber, T.2
Chomka, A.3
Frohlich, A.4
Adelmann, K.5
Wohlfert, E.A.6
-
48
-
-
63449112387
-
TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis
-
Taylor BC, Zaph C, Troy AE, Du Y, Guild KJ, Comeau MR et al. TSLP regulates intestinal immunity and inflammation in mouse models of helminth infection and colitis. J Exp Med 2009; 206: 655–667.
-
(2009)
J Exp Med
, vol.206
, pp. 655-667
-
-
Taylor, B.C.1
Zaph, C.2
Troy, A.E.3
Du, Y.4
Guild, K.J.5
Comeau, M.R.6
-
49
-
-
34250205694
-
Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL
-
He B, Xu W, Santini PA, Polydorides AD, Chiu A, Estrella J et al. Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL. Immunity 2007; 26: 812–826.
-
(2007)
Immunity
, vol.26
, pp. 812-826
-
-
He, B.1
Xu, W.2
Santini, P.A.3
Polydorides, A.D.4
Chiu, A.5
Estrella, J.6
-
50
-
-
84886280379
-
Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals
-
Shan M, Gentile M, Yeiser JR, Walland AC, Bornstein VU, Chen K et al. Mucus enhances gut homeostasis and oral tolerance by delivering immunoregulatory signals. Science 2013; 342: 447–453.
-
(2013)
Science
, vol.342
, pp. 447-453
-
-
Shan, M.1
Gentile, M.2
Yeiser, J.R.3
Walland, A.C.4
Bornstein, V.U.5
Chen, K.6
-
51
-
-
84938812082
-
The intestinal immunoendocrine axis: Novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease
-
Worthington JJ. The intestinal immunoendocrine axis: novel cross-talk between enteroendocrine cells and the immune system during infection and inflammatory disease. Biochem Soc Trans 2015; 43: 727–733.
-
(2015)
Biochem Soc Trans
, vol.43
, pp. 727-733
-
-
Worthington, J.J.1
-
52
-
-
80455160129
-
Cholecystokinin octapeptide significantly suppresses collagen-induced arthritis in mice by inhibiting Th17 polarization primed by dendritic cells
-
Li Q, Han D, Cong B, Shan B, Zhang J, Chen H et al. Cholecystokinin octapeptide significantly suppresses collagen-induced arthritis in mice by inhibiting Th17 polarization primed by dendritic cells. Cell Immunol 2011; 272: 53–60.
-
(2011)
Cell Immunol
, vol.272
, pp. 53-60
-
-
Li, Q.1
Han, D.2
Cong, B.3
Shan, B.4
Zhang, J.5
Chen, H.6
-
53
-
-
84925996764
-
Cholecystokinin inhibits inducible nitric oxide synthase expression by lipopolysaccharide-stimulated peritoneal macrophages
-
Saia RS, Mestriner FL, Bertozi G, Cunha FQ, Carnio EC. Cholecystokinin inhibits inducible nitric oxide synthase expression by lipopolysaccharide-stimulated peritoneal macrophages. Mediat Inflamm 2014; 2014: 896029.
-
(2014)
Mediat Inflamm
, vol.2014
-
-
Saia, R.S.1
Mestriner, F.L.2
Bertozi, G.3
Cunha, F.Q.4
Carnio, E.C.5
-
54
-
-
84899005101
-
Cholecystokinin octapeptide regulates the differentiation and effector cytokine production of CD4(+) T cells in vitro
-
Zhang JG, Liu JX, Jia XX, Geng J, Yu F, Cong B. Cholecystokinin octapeptide regulates the differentiation and effector cytokine production of CD4(+) T cells in vitro. Int Immunopharmacol 2014; 20: 307–315.
-
(2014)
Int Immunopharmacol
, vol.20
, pp. 307-315
-
-
Zhang, J.G.1
Liu, J.X.2
Jia, X.X.3
Geng, J.4
Yu, F.5
Cong, B.6
-
55
-
-
79551614767
-
Cholecystokinin octapeptide regulates lipopolysaccharide-activated B cells co-stimulatory molecule expression and cytokines production in vitro
-
Zhang JG, Cong B, Li QX, Chen HY, Qin J, Fu LH. Cholecystokinin octapeptide regulates lipopolysaccharide-activated B cells co-stimulatory molecule expression and cytokines production in vitro. Immunopharmacol Immunotoxicol 2011; 33: 157–163.
-
(2011)
Immunopharmacol Immunotoxicol
, vol.33
, pp. 157-163
-
-
Zhang, J.G.1
Cong, B.2
Li, Q.X.3
Chen, H.Y.4
Qin, J.5
Fu, L.H.6
-
56
-
-
26844436564
-
Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve
-
Luyer MD, Greve JW, Hadfoune M, Jacobs JA, Dejong CH, Buurman WA. Nutritional stimulation of cholecystokinin receptors inhibits inflammation via the vagus nerve. J Exp Med 2005; 202: 1023–1029.
-
(2005)
J Exp Med
, vol.202
, pp. 1023-1029
-
-
Luyer, M.D.1
Greve, J.W.2
Hadfoune, M.3
Jacobs, J.A.4
Dejong, C.H.5
Buurman, W.A.6
-
57
-
-
84872203428
-
Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine
-
Kusu T, Kayama H, Kinoshita M, Jeon SG, Ueda Y, Goto Y et al. Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine. J Immunol 2013; 190: 774–783.
-
(2013)
J Immunol
, vol.190
, pp. 774-783
-
-
Kusu, T.1
Kayama, H.2
Kinoshita, M.3
Jeon, S.G.4
Ueda, Y.5
Goto, Y.6
-
58
-
-
84879336857
-
Microfold (M) cells: Important immunosurveillance posts in the intestinal epithelium
-
Mabbott NA, Donaldson DS, Ohno H, Williams IR, Mahajan A. Microfold (M) cells: important immunosurveillance posts in the intestinal epithelium. Mucosal Immunol 2013; 6: 666–677.
-
(2013)
Mucosal Immunol
, vol.6
, pp. 666-677
-
-
Mabbott, N.A.1
Donaldson, D.S.2
Ohno, H.3
Williams, I.R.4
Mahajan, A.5
-
59
-
-
79251520655
-
Glycoprotein 2 (GP2): Grabbing the FimH bacteria into M cells for mucosal immunity
-
Ohno H, Hase K. Glycoprotein 2 (GP2): grabbing the FimH bacteria into M cells for mucosal immunity. Gut Microbes 2010; 1: 407–410.
-
(2010)
Gut Microbes
, vol.1
, pp. 407-410
-
-
Ohno, H.1
Hase, K.2
-
60
-
-
70449653428
-
Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response
-
Hase K, Kawano K, Nochi T, Pontes GS, Fukuda S, Ebisawa M et al. Uptake through glycoprotein 2 of FimH(+) bacteria by M cells initiates mucosal immune response. Nature 2009; 462: 226–230.
-
(2009)
Nature
, vol.462
, pp. 226-230
-
-
Hase, K.1
Kawano, K.2
Nochi, T.3
Pontes, G.S.4
Fukuda, S.5
Ebisawa, M.6
-
61
-
-
84864147310
-
The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells
-
Kanaya T, Hase K, Takahashi D, Fukuda S, Hoshino K, Sasaki I et al. The Ets transcription factor Spi-B is essential for the differentiation of intestinal microfold cells. Nat Immunol 2012; 13: 729–736.
-
(2012)
Nat Immunol
, vol.13
, pp. 729-736
-
-
Kanaya, T.1
Hase, K.2
Takahashi, D.3
Fukuda, S.4
Hoshino, K.5
Sasaki, I.6
-
62
-
-
84879398558
-
Transcription factor Spi-B-dependent and-independent pathways for the development of Peyer's patch M cells
-
Sato S, Kaneto S, Shibata N, Takahashi Y, Okura H, Yuki Y et al. Transcription factor Spi-B-dependent and-independent pathways for the development of Peyer's patch M cells. Mucosal Immunol 2013; 6: 838–846.
-
(2013)
Mucosal Immunol
, vol.6
, pp. 838-846
-
-
Sato, S.1
Kaneto, S.2
Shibata, N.3
Takahashi, Y.4
Okura, H.5
Yuki, Y.6
-
63
-
-
83755219473
-
Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review
-
Molodecky NA, Soon IS, Rabi DM, Ghali WA, Ferris M, Chernoff G et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 2012; 142: 46–54 e42.
-
(2012)
Gastroenterology
, vol.142
, pp. 46-54
-
-
Molodecky, N.A.1
Soon, I.S.2
Rabi, D.M.3
Ghali, W.A.4
Ferris, M.5
Chernoff, G.6
-
64
-
-
84942564274
-
The gut microbiota and inflammatory bowel disease
-
Goto Y, Kurashima Y, Kiyono H. The gut microbiota and inflammatory bowel disease. Curr Opin Rheumatol 2015; 27: 388–396.
-
(2015)
Curr Opin Rheumatol
, vol.27
, pp. 388-396
-
-
Goto, Y.1
Kurashima, Y.2
Kiyono, H.3
-
65
-
-
79952195585
-
Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47
-
Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M, Taylor KD et al. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat Genet 2011; 43: 246–252.
-
(2011)
Nat Genet
, vol.43
, pp. 246-252
-
-
Anderson, C.A.1
Boucher, G.2
Lees, C.W.3
Franke, A.4
D'amato, M.5
Taylor, K.D.6
-
66
-
-
78649489009
-
Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci
-
Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL, Ahmad T et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 2010; 42: 1118–1125.
-
(2010)
Nat Genet
, vol.42
, pp. 1118-1125
-
-
Franke, A.1
McGovern, D.P.2
Barrett, J.C.3
Wang, K.4
Radford-Smith, G.L.5
Ahmad, T.6
-
67
-
-
84868336049
-
Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease
-
Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP, Hui KY et al. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 2012; 491: 119–124.
-
(2012)
Nature
, vol.491
, pp. 119-124
-
-
Jostins, L.1
Ripke, S.2
Weersma, R.K.3
Duerr, R.H.4
McGovern, D.P.5
Hui, K.Y.6
-
68
-
-
84940771118
-
Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations
-
Liu JZ, van Sommeren S, Huang H, Ng SC, Alberts R, Takahashi A et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat Genet 2015; 47: 979–986.
-
(2015)
Nat Genet
, vol.47
, pp. 979-986
-
-
Liu, J.Z.1
van Sommeren, S.2
Huang, H.3
Ng, S.C.4
Alberts, R.5
Takahashi, A.6
-
69
-
-
84871755412
-
Inflammatory bowel disease: An impaired barrier disease
-
Jager S, Stange EF, Wehkamp J. Inflammatory bowel disease: an impaired barrier disease. Langenbecks Arch Surg 2013; 398: 1–12.
-
(2013)
Langenbecks Arch Surg
, vol.398
, pp. 1-12
-
-
Jager, S.1
Stange, E.F.2
Wehkamp, J.3
-
70
-
-
33745746660
-
Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection
-
Van der Sluis M, De Koning BA, De Bruijn AC, Velcich A, Meijerink JP, Van Goudoever JB et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006; 131: 117–129.
-
(2006)
Gastroenterology
, vol.131
, pp. 117-129
-
-
van der Sluis, M.1
de Koning, B.A.2
de Bruijn, A.C.3
Velcich, A.4
Meijerink, J.P.5
van Goudoever, J.B.6
-
71
-
-
79957576718
-
NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis
-
Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 2011; 145: 745–757.
-
(2011)
Cell
, vol.145
, pp. 745-757
-
-
Elinav, E.1
Strowig, T.2
Kau, A.L.3
Henao-Mejia, J.4
Thaiss, C.A.5
Booth, C.J.6
-
72
-
-
84941349580
-
Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice
-
Tanaka H, Takechi M, Kiyonari H, Shioi G, Tamura A, Tsukita S. Intestinal deletion of Claudin-7 enhances paracellular organic solute flux and initiates colonic inflammation in mice. Gut 2015; 64: 1529–1538.
-
(2015)
Gut
, vol.64
, pp. 1529-1538
-
-
Tanaka, H.1
Takechi, M.2
Kiyonari, H.3
Shioi, G.4
Tamura, A.5
Tsukita, S.6
-
73
-
-
84864886608
-
Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides
-
Frantz AL, Rogier EW, Weber CR, Shen L, Cohen DA, Fenton LA et al. Targeted deletion of MyD88 in intestinal epithelial cells results in compromised antibacterial immunity associated with downregulation of polymeric immunoglobulin receptor, mucin-2, and antibacterial peptides. Mucosal Immunol 2012; 5: 501–512.
-
(2012)
Mucosal Immunol
, vol.5
, pp. 501-512
-
-
Frantz, A.L.1
Rogier, E.W.2
Weber, C.R.3
Shen, L.4
Cohen, D.A.5
Fenton, L.A.6
-
74
-
-
84906071028
-
Intestinal epithelium-specific MyD88 signaling impacts host susceptibility to infectious colitis by promoting protective goblet cell and antimicrobial responses
-
Bhinder G, Stahl M, Sham HP, Crowley SM, Morampudi V, Dalwadi U et al. Intestinal epithelium-specific MyD88 signaling impacts host susceptibility to infectious colitis by promoting protective goblet cell and antimicrobial responses. Infect Immun 2014; 82: 3753–3763.
-
(2014)
Infect Immun
, vol.82
, pp. 3753-3763
-
-
Bhinder, G.1
Stahl, M.2
Sham, H.P.3
Crowley, S.M.4
Morampudi, V.5
Dalwadi, U.6
-
75
-
-
57449090428
-
Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease
-
Zenewicz LA, Yancopoulos GD, Valenzuela DM, Murphy AJ, Stevens S, Flavell RA. Innate and adaptive interleukin-22 protects mice from inflammatory bowel disease. Immunity 2008; 29: 947–957.
-
(2008)
Immunity
, vol.29
, pp. 947-957
-
-
Zenewicz, L.A.1
Yancopoulos, G.D.2
Valenzuela, D.M.3
Murphy, A.J.4
Stevens, S.5
Flavell, R.A.6
-
76
-
-
34047173496
-
Epithelial NEMO links innate immunity to chronic intestinal inflammation
-
Nenci A, Becker C, Wullaert A, Gareus R, van Loo G, Danese S et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 2007; 446: 557–561.
-
(2007)
Nature
, vol.446
, pp. 557-561
-
-
Nenci, A.1
Becker, C.2
Wullaert, A.3
Gareus, R.4
van Loo, G.5
Danese, S.6
-
77
-
-
0035978651
-
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease
-
Hugot JP, Chamaillard M, Zouali H, Lesage S, Cezard JP, Belaiche J et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001; 411: 599–603.
-
(2001)
Nature
, vol.411
, pp. 599-603
-
-
Hugot, J.P.1
Chamaillard, M.2
Zouali, H.3
Lesage, S.4
Cezard, J.P.5
Belaiche, J.6
-
78
-
-
77957047689
-
Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum
-
Biswas A, Liu YJ, Hao L, Mizoguchi A, Salzman NH, Bevins CL et al. Induction and rescue of Nod2-dependent Th1-driven granulomatous inflammation of the ileum. Proc Natl Acad Sci USA 2010; 107: 14739–14744.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 14739-14744
-
-
Biswas, A.1
Liu, Y.J.2
Hao, L.3
Mizoguchi, A.4
Salzman, N.H.5
Bevins, C.L.6
-
79
-
-
0035978533
-
A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease
-
Ogura Y, Bonen DK, Inohara N, Nicolae DL, Chen FF, Ramos R et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature 2001; 411: 603–606.
-
(2001)
Nature
, vol.411
, pp. 603-606
-
-
Ogura, Y.1
Bonen, D.K.2
Inohara, N.3
Nicolae, D.L.4
Chen, F.F.5
Ramos, R.6
-
80
-
-
80051535555
-
The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice
-
Takahashi D, Hase K, Kimura S, Nakatsu F, Ohmae M, Mandai Y et al. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology 2011; 141: 621–632.
-
(2011)
Gastroenterology
, vol.141
, pp. 621-632
-
-
Takahashi, D.1
Hase, K.2
Kimura, S.3
Nakatsu, F.4
Ohmae, M.5
Mandai, Y.6
|