-
2
-
-
78649489009
-
Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci
-
Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat Genet 2010;42:1118-1125.
-
(2010)
Nat Genet
, vol.42
, pp. 1118-1125
-
-
Franke, A.1
McGovern, D.P.2
Barrett, J.C.3
-
3
-
-
83655191565
-
Epithelial barrier: An interface for the cross-communication between gut flora and immune system
-
Goto Y, Kiyono H. Epithelial barrier: an interface for the cross-communication between gut flora and immune system. Immunol Rev 2012;245:147-163.
-
(2012)
Immunol Rev
, vol.245
, pp. 147-163
-
-
Goto, Y.1
Kiyono, H.2
-
4
-
-
50249086073
-
XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease
-
Kaser A, Lee AH, Franke A, et al. XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 2008;134:743-756.
-
(2008)
Cell
, vol.134
, pp. 743-756
-
-
Kaser, A.1
Lee, A.H.2
Franke, A.3
-
5
-
-
56249135538
-
A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells
-
Cadwell K, Liu JY, Brown SL, et al. A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 2008;456:259-263.
-
(2008)
Nature
, vol.456
, pp. 259-263
-
-
Cadwell, K.1
Liu, J.Y.2
Brown, S.L.3
-
6
-
-
56249090667
-
Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
-
Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008;456:264-268.
-
(2008)
Nature
, vol.456
, pp. 264-268
-
-
Saitoh, T.1
Fujita, N.2
Jang, M.H.3
-
7
-
-
84902657697
-
Inflammatory bowel disease as a model for translating the microbiome
-
Huttenhower C, Kostic AD, Xavier RJ. Inflammatory bowel disease as a model for translating the microbiome. Immunity 2014;40:843-854.
-
(2014)
Immunity
, vol.40
, pp. 843-854
-
-
Huttenhower, C.1
Kostic, A.D.2
Xavier, R.J.3
-
8
-
-
84881477044
-
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota
-
Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013;500:232-236.
-
(2013)
Nature
, vol.500
, pp. 232-236
-
-
Atarashi, K.1
Tanoue, T.2
Oshima, K.3
-
9
-
-
85027947787
-
Induction of colonic regulatory T cells by indigenous Clostridium species
-
Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011;331:337-341.
-
(2011)
Science
, vol.331
, pp. 337-341
-
-
Atarashi, K.1
Tanoue, T.2
Shima, T.3
-
10
-
-
70349742524
-
The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses
-
Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 2009;31:677-689.
-
(2009)
Immunity
, vol.31
, pp. 677-689
-
-
Gaboriau-Routhiau, V.1
Rakotobe, S.2
Lecuyer, E.3
-
11
-
-
70350343544
-
Induction of intestinal Th17 cells by segmented filamentous bacteria
-
Ivanov II, Atarashi K, Manel N, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 2009;139:485-498.
-
(2009)
Cell
, vol.139
, pp. 485-498
-
-
Ivanov, I.I.1
Atarashi, K.2
Manel, N.3
-
12
-
-
84875222668
-
Intestinal epithelial cells as mediators of the commensal-host immune crosstalk
-
Goto Y, Ivanov II. Intestinal epithelial cells as mediators of the commensal-host immune crosstalk. Immunol Cell Biol 2013;91:204-214.
-
(2013)
Immunol Cell Biol
, vol.91
, pp. 204-214
-
-
Goto, Y.1
Ivanov, I.I.2
-
13
-
-
49049095991
-
Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis
-
Kajino-Sakamoto R, Inagaki M, Lippert E, et al. Enterocyte-derived TAK1 signaling prevents epithelium apoptosis and the development of ileitis and colitis. J Immunol 2008;181:1143-1152.
-
(2008)
J Immunol
, vol.181
, pp. 1143-1152
-
-
Kajino-Sakamoto, R.1
Inagaki, M.2
Lippert, E.3
-
14
-
-
34047173496
-
Epithelial NEMO links innate immunity to chronic intestinal inflammation
-
Nenci A, Becker C, Wullaert A, et al. Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 2007;446:557-561.
-
(2007)
Nature
, vol.446
, pp. 557-561
-
-
Nenci, A.1
Becker, C.2
Wullaert, A.3
-
15
-
-
79251584066
-
Bifidobacteria can protect from enteropathogenic infection through production of acetate
-
Fukuda S, Toh H, Hase K, et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 2011;469:543-547.
-
(2011)
Nature
, vol.469
, pp. 543-547
-
-
Fukuda, S.1
Toh, H.2
Hase, K.3
-
17
-
-
54449083567
-
The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria
-
Johansson ME, Phillipson M, Petersson J, et al. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A 2008;105:15064-15069.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 15064-15069
-
-
Johansson, M.E.1
Phillipson, M.2
Petersson, J.3
-
18
-
-
33745746660
-
Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection
-
Van Der Sluis M, De Koning BA, De Bruijn AC, et al. Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterology 2006;131:117-129.
-
(2006)
Gastroenterology
, vol.131
, pp. 117-129
-
-
Van Der Sluis, M.1
De Koning, B.A.2
De Bruijn, A.C.3
-
19
-
-
0036500996
-
Colorectal cancer in mice genetically deficient in the mucin Muc2
-
Velcich A, Yang W, Heyer J, et al. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 2002;295:1726-1729.
-
(2002)
Science
, vol.295
, pp. 1726-1729
-
-
Velcich, A.1
Yang, W.2
Heyer, J.3
-
20
-
-
84862818460
-
The membrane-bound mucin Muc1 regulates T helper 17-cell responses and colitis in mice
-
e862
-
Nishida A, Lau CW, Zhang M, et al. The membrane-bound mucin Muc1 regulates T helper 17-cell responses and colitis in mice. Gastroenterology 2012;142:865-874; e862.
-
(2012)
Gastroenterology
, vol.142
, pp. 865-874
-
-
Nishida, A.1
Lau, C.W.2
Zhang, M.3
-
21
-
-
10244226689
-
War and peace at mucosal surfaces
-
Sansonetti PJ. War and peace at mucosal surfaces. Nat Rev Immunol 2004;4:953-964.
-
(2004)
Nat Rev Immunol
, vol.4
, pp. 953-964
-
-
Sansonetti, P.J.1
-
22
-
-
58549111588
-
Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface
-
Vaishnava S, Behrendt CL, Ismail AS, et al. Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host-microbial interface. Proc Natl Acad Sci U S A 2008;105:20858-20863.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 20858-20863
-
-
Vaishnava, S.1
Behrendt, C.L.2
Ismail, A.S.3
-
23
-
-
80054122238
-
The antibacterial lectin RegIIIg promotes the spatial segregation of microbiota and host in the intestine
-
Vaishnava S, Yamamoto M, Severson KM, et al. The antibacterial lectin RegIIIg promotes the spatial segregation of microbiota and host in the intestine. Science 2011;334:255-258.
-
(2011)
Science
, vol.334
, pp. 255-258
-
-
Vaishnava, S.1
Yamamoto, M.2
Severson, K.M.3
-
24
-
-
0037340434
-
Angiogenins: A new class of microbicidal proteins involved in innate immunity
-
Hooper LV, Stappenbeck TS, Hong CV, Gordon JI. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat Immunol 2003;4:269-273.
-
(2003)
Nat Immunol
, vol.4
, pp. 269-273
-
-
Hooper, L.V.1
Stappenbeck, T.S.2
Hong, C.V.3
Gordon, J.I.4
-
25
-
-
0035793372
-
Molecular analysis of commensal hostmicrobial relationships in the intestine
-
Hooper LV, Wong MH, Thelin A, et al. Molecular analysis of commensal hostmicrobial relationships in the intestine. Science 2001;291:881-884.
-
(2001)
Science
, vol.291
, pp. 881-884
-
-
Hooper, L.V.1
Wong, M.H.2
Thelin, A.3
-
26
-
-
0032734313
-
Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium
-
O'Neil DA, Porter EM, Elewaut D, et al. Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. J Immunol 1999;163:6718-6724.
-
(1999)
J Immunol
, vol.163
, pp. 6718-6724
-
-
O'Neil, D.A.1
Porter, E.M.2
Elewaut, D.3
-
27
-
-
13244292161
-
Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract
-
Kobayashi KS, Chamaillard M, Ogura Y, et al. Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 2005;307:731-734.
-
(2005)
Science
, vol.307
, pp. 731-734
-
-
Kobayashi, K.S.1
Chamaillard, M.2
Ogura, Y.3
-
28
-
-
57849117363
-
RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells
-
Sanos SL, Bui VL, Mortha A, et al. RORgammat and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 2009;10:83-91.
-
(2009)
Nat Immunol
, vol.10
, pp. 83-91
-
-
Sanos, S.L.1
Bui, V.L.2
Mortha, A.3
-
29
-
-
33748039462
-
Symbiotic bacteria direct expression of an intestinal bactericidal lectin
-
Cash HL, Whitham CV, Behrendt CL, Hooper LV. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 2006;313:1126-1130.
-
(2006)
Science
, vol.313
, pp. 1126-1130
-
-
Cash, H.L.1
Whitham, C.V.2
Behrendt, C.L.3
Hooper, L.V.4
-
30
-
-
0035978651
-
Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease
-
Hugot JP, Chamaillard M, Zouali H, et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001;411:599-603.
-
(2001)
Nature
, vol.411
, pp. 599-603
-
-
Hugot, J.P.1
Chamaillard, M.2
Zouali, H.3
-
31
-
-
33748155285
-
Bacterial glycans: Key mediators of diverse host immune responses
-
Comstock LE, Kasper DL. Bacterial glycans: key mediators of diverse host immune responses. Cell 2006;126:847-850.
-
(2006)
Cell
, vol.126
, pp. 847-850
-
-
Comstock, L.E.1
Kasper, D.L.2
-
32
-
-
0033578387
-
A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem
-
Hooper LV, Xu J, Falk PG, et al. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc Natl Acad Sci U S A 1999;96:9833-9838.
-
(1999)
Proc Natl Acad Sci U S A
, vol.96
, pp. 9833-9838
-
-
Hooper, L.V.1
Xu, J.2
Falk, P.G.3
-
33
-
-
84897461869
-
A FUT2 gene common polymorphism determines resistance to rotavirus A of the P [8] genotype
-
Imbert-Marcille BM, Barbe L, Dupe M, et al. A FUT2 gene common polymorphism determines resistance to rotavirus A of the P [8] genotype. J Infect Dis 2014;209:1227-1230.
-
(2014)
J Infect Dis
, vol.209
, pp. 1227-1230
-
-
Imbert-Marcille, B.M.1
Barbe, L.2
Dupe, M.3
-
34
-
-
0038239855
-
Human susceptibility and resistance to Norwalk virus infection
-
Lindesmith L, Moe C, Marionneau S, et al. Human susceptibility and resistance to Norwalk virus infection. Nat Med 2003;9:548-553.
-
(2003)
Nat Med
, vol.9
, pp. 548-553
-
-
Lindesmith, L.1
Moe, C.2
Marionneau, S.3
-
35
-
-
60349107594
-
Salmonella enterica serotype Typhimurium Std fimbriae bind terminal alpha (1, 2) fucose residues in the cecal mucosa
-
Chessa D, Winter MG, Jakomin M, Baumler AJ. Salmonella enterica serotype Typhimurium Std fimbriae bind terminal alpha (1, 2) fucose residues in the cecal mucosa. Mol Microbiol 2009;71:864-875.
-
(2009)
Mol Microbiol
, vol.71
, pp. 864-875
-
-
Chessa, D.1
Winter, M.G.2
Jakomin, M.3
Baumler, A.J.4
-
36
-
-
84885711264
-
Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota
-
Kashyap PC, Marcobal A, Ursell LK, et al. Genetically dictated change in host mucus carbohydrate landscape exerts a diet-dependent effect on the gut microbiota. Proc Natl Acad Sci U S A 2013;110:17059-17064.
-
(2013)
Proc Natl Acad Sci U S A
, vol.110
, pp. 17059-17064
-
-
Kashyap, P.C.1
Marcobal, A.2
Ursell, L.K.3
-
37
-
-
82755168804
-
Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype
-
Rausch P, Rehman A, Kunzel S, et al. Colonic mucosa-associated microbiota is influenced by an interaction of Crohn disease and FUT2 (Secretor) genotype. Proc Natl Acad Sci U S A 2011;108:19030-19035.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 19030-19035
-
-
Rausch, P.1
Rehman, A.2
Kunzel, S.3
-
38
-
-
84907208430
-
Innate lymphoid cells regulate intestinal epithelial cell glycosylation
-
Goto Y, Obata T, Kunisawa J, et al. Innate lymphoid cells regulate intestinal epithelial cell glycosylation. Science 2014;345:1254009.
-
(2014)
Science
, vol.345
, pp. 1254009
-
-
Goto, Y.1
Obata, T.2
Kunisawa, J.3
-
39
-
-
84908075358
-
Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen
-
Pham TA, Clare S, Goulding D, et al. Epithelial IL-22RA1-mediated fucosylation promotes intestinal colonization resistance to an opportunistic pathogen. Cell Host Microbe 2014;16:504-516.
-
(2014)
Cell Host Microbe
, vol.16
, pp. 504-516
-
-
Pham, T.A.1
Clare, S.2
Goulding, D.3
-
40
-
-
80053548022
-
FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection
-
Smyth DJ, Cooper JD, Howson JM, et al. FUT2 nonsecretor status links type 1 diabetes susceptibility and resistance to infection. Diabetes 2011;60:3081-3084.
-
(2011)
Diabetes
, vol.60
, pp. 3081-3084
-
-
Smyth, D.J.1
Cooper, J.D.2
Howson, J.M.3
-
41
-
-
84863981813
-
Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci
-
Folseraas T, Melum E, Rausch P, et al. Extended analysis of a genome-wide association study in primary sclerosing cholangitis detects multiple novel risk loci. J Hepatol 2012;57:366-375.
-
(2012)
J Hepatol
, vol.57
, pp. 366-375
-
-
Folseraas, T.1
Melum, E.2
Rausch, P.3
-
42
-
-
84908403149
-
Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness
-
Pickard JM, Maurice CF, Kinnebrew MA, et al. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 2014;514:638-641.
-
(2014)
Nature
, vol.514
, pp. 638-641
-
-
Pickard, J.M.1
Maurice, C.F.2
Kinnebrew, M.A.3
-
43
-
-
0033006564
-
Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system
-
Umesaki Y, Setoyama H, Matsumoto S, et al. Differential roles of segmented filamentous bacteria and clostridia in development of the intestinal immune system. Infect Immun 1999;67:3504-3511.
-
(1999)
Infect Immun
, vol.67
, pp. 3504-3511
-
-
Umesaki, Y.1
Setoyama, H.2
Matsumoto, S.3
-
44
-
-
79952748674
-
Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis
-
Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 2011;108(Suppl 1):4615-4622.
-
(2011)
Proc Natl Acad Sci U S A
, vol.108
, pp. 4615-4622
-
-
Lee, Y.K.1
Menezes, J.S.2
Umesaki, Y.3
Mazmanian, S.K.4
-
45
-
-
77953913586
-
Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells
-
Wu HJ, Ivanov II, Darce J, et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 2010;32:815-827.
-
(2010)
Immunity
, vol.32
, pp. 815-827
-
-
Wu, H.J.1
Ivanov, I.I.2
Darce, J.3
-
46
-
-
84898679249
-
Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation
-
Goto Y, Panea C, Nakato G, et al. Segmented filamentous bacteria antigens presented by intestinal dendritic cells drive mucosal Th17 cell differentiation. Immunity 2014;40:594-607.
-
(2014)
Immunity
, vol.40
, pp. 594-607
-
-
Goto, Y.1
Panea, C.2
Nakato, G.3
-
47
-
-
84901979873
-
Focused specificity of intestinal TH17 cells towards commensal bacterial antigens
-
Yang Y, Torchinsky MB, Gobert M, et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 2014;510:152-156.
-
(2014)
Nature
, vol.510
, pp. 152-156
-
-
Yang, Y.1
Torchinsky, M.B.2
Gobert, M.3
-
48
-
-
11144358593
-
Intestinal villousMcells: An antigen entry site in the mucosal epithelium
-
Jang MH, Kweon MN, Iwatani K, et al. Intestinal villousMcells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A 2004;101:6110-6115.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, pp. 6110-6115
-
-
Jang, M.H.1
Kweon, M.N.2
Iwatani, K.3
-
49
-
-
0035321325
-
Ricciardi-Castagnoli P: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria
-
Rescigno M, Urbano M, Valzasina B, et al. Ricciardi-Castagnoli P: Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2001;2:361-367.
-
(2001)
Nat Immunol
, vol.2
, pp. 361-367
-
-
Rescigno, M.1
Urbano, M.2
Valzasina, B.3
-
50
-
-
84899854070
-
Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut
-
Morton AM, Sefik E, Upadhyay R, et al. Endoscopic photoconversion reveals unexpectedly broad leukocyte trafficking to and from the gut. Proc Natl Acad Sci U S A 2014;111:6696-6701.
-
(2014)
Proc Natl Acad Sci U S A
, vol.111
, pp. 6696-6701
-
-
Morton, A.M.1
Sefik, E.2
Upadhyay, R.3
-
51
-
-
84857444876
-
Interleukin 23 production by intestinal CD103 (+) CD11b (+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense
-
Kinnebrew MA, Buffie CG, Diehl GE, et al. Interleukin 23 production by intestinal CD103 (+) CD11b (+) dendritic cells in response to bacterial flagellin enhances mucosal innate immune defense. Immunity 2012;36:276-287.
-
(2012)
Immunity
, vol.36
, pp. 276-287
-
-
Kinnebrew, M.A.1
Buffie, C.G.2
Diehl, G.E.3
-
52
-
-
79960500206
-
Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge
-
Tumanov AV, Koroleva EP, Guo X, et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe 2011;10:44-53.
-
(2011)
Cell Host Microbe
, vol.10
, pp. 44-53
-
-
Tumanov, A.V.1
Koroleva, E.P.2
Guo, X.3
-
53
-
-
77951878587
-
Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology
-
Buonocore S, Ahern PP, Uhlig HH, et al. Innate lymphoid cells drive interleukin-23-dependent innate intestinal pathology. Nature 2010;464:1371-1375.
-
(2010)
Nature
, vol.464
, pp. 1371-1375
-
-
Buonocore, S.1
Ahern, P.P.2
Uhlig, H.H.3
-
54
-
-
59849114998
-
ROR (-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F
-
Leppkes M, Becker C, Ivanov II, et al. ROR (-expressing Th17 cells induce murine chronic intestinal inflammation via redundant effects of IL-17A and IL-17F. Gastroenterology 2009;136:257-267.
-
(2009)
Gastroenterology
, vol.136
, pp. 257-267
-
-
Leppkes, M.1
Becker, C.2
Ivanov, I.I.3
-
55
-
-
77952208123
-
Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibodymediated symbiosis
-
Obata T, Goto Y, Kunisawa J, et al. Indigenous opportunistic bacteria inhabit mammalian gut-associated lymphoid tissues and share a mucosal antibodymediated symbiosis. Proc Natl Acad Sci U S A 2010;107:7419-7424.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 7419-7424
-
-
Obata, T.1
Goto, Y.2
Kunisawa, J.3
-
56
-
-
84861989207
-
Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria
-
Sonnenberg GF, Monticelli LA, Alenghat T, et al. Innate lymphoid cells promote anatomical containment of lymphoid-resident commensal bacteria. Science 2012;336:1321-1325.
-
(2012)
Science
, vol.336
, pp. 1321-1325
-
-
Sonnenberg, G.F.1
Monticelli, L.A.2
Alenghat, T.3
-
57
-
-
84875533597
-
Glucose triggers ATP secretion from bacteria in a growth-phase-dependent manner
-
Hironaka I, Iwase T, Sugimoto S, et al. Glucose triggers ATP secretion from bacteria in a growth-phase-dependent manner. Appl Environ Microbiol 2013;79:2328-2335.
-
(2013)
Appl Environ Microbiol
, vol.79
, pp. 2328-2335
-
-
Hironaka, I.1
Iwase, T.2
Sugimoto, S.3
-
58
-
-
84872203428
-
Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine
-
Kusu T, Kayama H, Kinoshita M, et al. Ecto-nucleoside triphosphate diphosphohydrolase 7 controls Th17 cell responses through regulation of luminal ATP in the small intestine. J Immunol 2013;190:774-783.
-
(2013)
J Immunol
, vol.190
, pp. 774-783
-
-
Kusu, T.1
Kayama, H.2
Kinoshita, M.3
-
59
-
-
84912086043
-
ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer's patches to promote host-microbiota mutualism
-
Proietti M, Cornacchione V, Rezzonico Jost T, et al. ATP-gated ionotropic P2X7 receptor controls follicular T helper cell numbers in Peyer's patches to promote host-microbiota mutualism. Immunity 2013;41:789-801.
-
(2013)
Immunity
, vol.41
, pp. 789-801
-
-
Proietti, M.1
Cornacchione, V.2
Rezzonico Jost, T.3
-
60
-
-
84864303294
-
The origins, function, and regulation of T follicular helper cells
-
Ma CS, Deenick EK, Batten M, Tangye SG. The origins, function, and regulation of T follicular helper cells. J Exp Med 2012;209:1241-1253.
-
(2012)
J Exp Med
, vol.209
, pp. 1241-1253
-
-
Ma, C.S.1
Deenick, E.K.2
Batten, M.3
Tangye, S.G.4
-
61
-
-
84871333467
-
ATP conditions intestinal epithelial cells to an inflammatory state that promotes components of DC maturation
-
Yao Y, Levings MK, Steiner TS. ATP conditions intestinal epithelial cells to an inflammatory state that promotes components of DC maturation. Eur J Immunol 2012;42:3310-3321.
-
(2012)
Eur J Immunol
, vol.42
, pp. 3310-3321
-
-
Yao, Y.1
Levings, M.K.2
Steiner, T.S.3
-
62
-
-
55649113607
-
Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels
-
Schenk U, Westendorf AM, Radaelli E, et al. Purinergic control of T cell activation by ATP released through pannexin-1 hemichannels. Sci Signal 2008;1:ra6.
-
(2008)
Sci Signal
, vol.1
, pp. ra6
-
-
Schenk, U.1
Westendorf, A.M.2
Radaelli, E.3
-
63
-
-
84866990701
-
Extracellular ATP mediates mast celldependent intestinal inflammation through P2X7 purinoceptors
-
Kurashima Y, Amiya T, Nochi T, et al. Extracellular ATP mediates mast celldependent intestinal inflammation through P2X7 purinoceptors. Nat Commun 2012;3:1034.
-
(2012)
Nat Commun
, vol.3
, pp. 1034
-
-
Kurashima, Y.1
Amiya, T.2
Nochi, T.3
-
64
-
-
84887702141
-
Prophylactic systemic P2X7 receptor blockade prevents experimental colitis
-
Marques CC, Castelo-Branco MT, Pacheco RG, et al. Prophylactic systemic P2X7 receptor blockade prevents experimental colitis. Biochim Biophys Acta 2014;1842:65-78.
-
(2014)
Biochim Biophys Acta
, vol.1842
, pp. 65-78
-
-
Marques, C.C.1
Castelo-Branco, M.T.2
Pacheco, R.G.3
-
65
-
-
84898724158
-
Overexpression of ATPactivated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn's disease
-
Neves AR, Castelo-Branco MT, Figliuolo VR, et al. Overexpression of ATPactivated P2X7 receptors in the intestinal mucosa is implicated in the pathogenesis of Crohn's disease. Inflamm Bowel Dis 2014;20:444-457.
-
(2014)
Inflamm Bowel Dis
, vol.20
, pp. 444-457
-
-
Neves, A.R.1
Castelo-Branco, M.T.2
Figliuolo, V.R.3
-
66
-
-
84963887638
-
Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation
-
Matsukawa T, Izawa K, Isobe M, et al. Ceramide-CD300f binding suppresses experimental colitis by inhibiting ATP-mediated mast cell activation. Gut 2014;
-
(2014)
Gut
-
-
Matsukawa, T.1
Izawa, K.2
Isobe, M.3
-
67
-
-
84942563841
-
-
Feb. 11, Epub ahead of print
-
Gut. 2015 Feb. 11. pii: gutjnl-2014-308900. doi: 10.1136/gutjnl-2014-308900. [Epub ahead of print]
-
(2015)
Gut.
-
-
-
68
-
-
84918496003
-
Current scenario in inflammatory bowel disease: Drug development prospects
-
Chandel S, Prakash A, Medhi B. Current scenario in inflammatory bowel disease: drug development prospects. Pharmacol Rep 2015;67:224-229.
-
(2015)
Pharmacol Rep
, vol.67
, pp. 224-229
-
-
Chandel, S.1
Prakash, A.2
Medhi, B.3
-
69
-
-
84907557973
-
The microbial basis of inflammatory bowel diseases
-
Dalal SR, Chang EB. The microbial basis of inflammatory bowel diseases. J Clin Invest 2014;124:4190-4196.
-
(2014)
J Clin Invest
, vol.124
, pp. 4190-4196
-
-
Dalal, S.R.1
Chang, E.B.2
-
70
-
-
84912059418
-
Enteric microbiota leads to new therapeutic strategies for ulcerative colitis
-
Chen WX, Ren LH, Shi RH. Enteric microbiota leads to new therapeutic strategies for ulcerative colitis. World J Gastroenterol 2014;20:15657-15663.
-
(2014)
World J Gastroenterol
, vol.20
, pp. 15657-15663
-
-
Chen, W.X.1
Ren, L.H.2
Shi, R.H.3
-
71
-
-
84883184463
-
Gut microbial flora, prebiotics, and probiotics in IBD: Their current usage and utility
-
Scaldaferri F, Gerardi V, Lopetuso LR, et al. Gut microbial flora, prebiotics, and probiotics in IBD: their current usage and utility. Biomed Res Int 2013;2013:435268.
-
(2013)
Biomed Res Int
, vol.2013
, pp. 435268
-
-
Scaldaferri, F.1
Gerardi, V.2
Lopetuso, L.R.3
-
72
-
-
76649140863
-
Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders
-
Kwon HK, Lee CG, So JS, et al. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. Proc Natl Acad Sci U S A 2010;107:2159-2164.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 2159-2164
-
-
Kwon, H.K.1
Lee, C.G.2
So, J.S.3
-
73
-
-
83255192440
-
Beneficial effect of probiotics in IBD: Are peptidogycan and NOD2 the molecular key effectors?
-
Macho Fernandez E, Pot B, Grangette C. Beneficial effect of probiotics in IBD: are peptidogycan and NOD2 the molecular key effectors? Gut Microbes 2011;2:280-286.
-
(2011)
Gut Microbes
, vol.2
, pp. 280-286
-
-
Macho Fernandez, E.1
Pot, B.2
Grangette, C.3
-
74
-
-
84874786762
-
Lactocepin as a protective microbial structure in the context of IBD
-
Hormannsperger G, Von Schillde MA, Haller D. Lactocepin as a protective microbial structure in the context of IBD. Gut Microbes 2013;4:152-157.
-
(2013)
Gut Microbes
, vol.4
, pp. 152-157
-
-
Hormannsperger, G.1
Von Schillde, M.A.2
Haller, D.3
-
75
-
-
84927910670
-
Modulating the microbiota in inflammatory bowel diseases: Prebiotics, probiotics or faecal transplantation?
-
Verbeke KA, Boesmans L, Boets E. Modulating the microbiota in inflammatory bowel diseases: prebiotics, probiotics or faecal transplantation? Proc Nutr Soc 2014;73:490-497.
-
(2014)
Proc Nutr Soc
, vol.73
, pp. 490-497
-
-
Verbeke, K.A.1
Boesmans, L.2
Boets, E.3
-
76
-
-
84885658881
-
Recent advances in inflammatory bowel disease: Mucosal immune cells in intestinal inflammation
-
Cader MZ, Kaser A. Recent advances in inflammatory bowel disease: mucosal immune cells in intestinal inflammation. Gut 2013;62:1653-1664.
-
(2013)
Gut
, vol.62
, pp. 1653-1664
-
-
Cader, M.Z.1
Kaser, A.2
-
77
-
-
84863643114
-
Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon
-
Jeon SG, Kayama H, Ueda Y, et al. Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathog 2012;8:e1002714.
-
(2012)
PLoS Pathog
, vol.8
, pp. e1002714
-
-
Jeon, S.G.1
Kayama, H.2
Ueda, Y.3
-
78
-
-
84876708253
-
Fiber and prebiotics: Mechanisms and health benefits
-
Slavin J. Fiber and prebiotics: mechanisms and health benefits. Nutrients 2013;5:1417-1435.
-
(2013)
Nutrients
, vol.5
, pp. 1417-1435
-
-
Slavin, J.1
-
79
-
-
2442453484
-
Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: Antibiotics, probiotics, and prebiotics
-
Sartor RB. Therapeutic manipulation of the enteric microflora in inflammatory bowel diseases: antibiotics, probiotics, and prebiotics. Gastroenterology 2004;126:1620-1633.
-
(2004)
Gastroenterology
, vol.126
, pp. 1620-1633
-
-
Sartor, R.B.1
-
80
-
-
84919785262
-
IBD: Microbiota manipulation through diet and modified bacteria
-
Simpson HL, Campbell BJ, Rhodes JM. IBD: microbiota manipulation through diet and modified bacteria. Dig Dis 2014;32(Suppl 1):18-25.
-
(2014)
Dig Dis
, vol.32
, pp. 18-25
-
-
Simpson, H.L.1
Campbell, B.J.2
Rhodes, J.M.3
-
81
-
-
84890564250
-
Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells
-
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013;504:446-450.
-
(2013)
Nature
, vol.504
, pp. 446-450
-
-
Furusawa, Y.1
Obata, Y.2
Fukuda, S.3
-
82
-
-
84919634599
-
Metabolic control of regulatory T cell development and function
-
Zeng H, Chi H. Metabolic control of regulatory T cell development and function. Trends Immunol 2015;36:3-12.
-
(2015)
Trends Immunol
, vol.36
, pp. 3-12
-
-
Zeng, H.1
Chi, H.2
-
83
-
-
84904048875
-
A decrease of the butyrate-producing species Roseburia hominis and Faecalibacteriumprausnitzii defines dysbiosis in patients with ulcerative colitis
-
Machiels K, Joossens M, Sabino J, et al. A decrease of the butyrate-producing species Roseburia hominis and Faecalibacteriumprausnitzii defines dysbiosis in patients with ulcerative colitis. Gut 2014;63:1275-1283.
-
(2014)
Gut
, vol.63
, pp. 1275-1283
-
-
Machiels, K.1
Joossens, M.2
Sabino, J.3
-
84
-
-
84873570579
-
American Journal of Gastroenterology Lecture: Intestinal microbiota and the role of fecal microbiota transplant (FMT) in treatment of C. Difficile infection
-
Brandt LJ. American Journal of Gastroenterology Lecture: Intestinal microbiota and the role of fecal microbiota transplant (FMT) in treatment of C. difficile infection. Am J Gastroenterol 2013;108:177-185.
-
(2013)
Am J Gastroenterol
, vol.108
, pp. 177-185
-
-
Brandt, L.J.1
-
85
-
-
84920931626
-
Fecal microbiota transplantation broadening its application beyond intestinal disorders
-
Xu MQ, Cao HL, Wang WQ, et al. Fecal microbiota transplantation broadening its application beyond intestinal disorders. World J Gastroenterol 2015;21:102-111.
-
(2015)
World J Gastroenterol
, vol.21
, pp. 102-111
-
-
Xu, M.Q.1
Cao, H.L.2
Wang, W.Q.3
|