-
2
-
-
29344432464
-
Reducing labeling effort for structured prediction tasks
-
Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
-
A. Culotta and A. McCallum, "Reducing Labeling Effort for Structured Prediction Tasks," Proc. 20th Nat'l Conf. Artificial Intelligence (AAAI), pp. 746-751, 2005. (Pubitemid 43006698)
-
(2005)
Proceedings of the National Conference on Artificial Intelligence
, vol.2
, pp. 746-751
-
-
Culotta, A.1
McCallum, A.2
-
3
-
-
0000710299
-
Queries and concept learning
-
D. Angluin, "Queries and Concept Learning," Machine Learning, vol. 2, pp. 319-342, 1988.
-
(1988)
Machine Learning
, vol.2
, pp. 319-342
-
-
Angluin, D.1
-
5
-
-
14344266781
-
Semi-supervise learning using randomized mincuts
-
A. Blum, J. Lafferty, M. R. Rwebangira, and R. Reddy, "Semi-Supervise Learning Using Randomized Mincuts," Proc. 21st Int'l Conf. Machine Learning (ICML), 2004.
-
(2004)
Proc. 21st Int'l Conf. Machine Learning (ICML)
-
-
Blum, A.1
Lafferty, J.2
Rwebangira, M.R.3
Reddy, R.4
-
6
-
-
0029679131
-
Active learning with statistical models
-
D. Cohn, Z. Ghahramani, and M. Jordan, "Active Learning with Statistical Models," J. Artificial Intelligence Research, vol. 4, pp. 129-145, 1996. (Pubitemid 126646151)
-
(1996)
Journal of Artificial Intelligence Research
, vol.4
, pp. 129-145
-
-
Cohn, D.A.1
Ghahramani, Z.2
Jordan, M.I.3
-
7
-
-
84926662675
-
Nearest neighbor pattern classification
-
Jan.
-
T. Cover and P. Hart, "Nearest Neighbor Pattern Classification, " IEEE Trans. Information Theory, vol. IT-13, no. 1, pp. 21-27, Jan. 1967.
-
(1967)
IEEE Trans. Information Theory
, vol.IT-13
, Issue.1
, pp. 21-27
-
-
Cover, T.1
Hart, P.2
-
10
-
-
57349122015
-
Learning from labeled features using generalized expectation criteria
-
G. Druck, G. Mann, and A. McCallum, "Learning from Labeled Features Using Generalized Expectation Criteria," Proc. 31st Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR), pp. 595-602, 2008.
-
(2008)
Proc. 31st Ann. Int'l ACM SIGIR Conf. Research and Development in Information Retrieval (SIGIR)
, pp. 595-602
-
-
Druck, G.1
Mann, G.2
McCallum, A.3
-
11
-
-
77951767828
-
Asking generalized queries to domain experts to improve learning
-
June
-
J. Du and C. C. Ling, "Asking Generalized Queries to Domain Experts to Improve Learning," IEEE Trans. Knowledge and Data Eng., vol. 22, no. 6, pp. 812-825, June 2010.
-
(2010)
IEEE Trans. Knowledge and Data Eng.
, vol.22
, Issue.6
, pp. 812-825
-
-
Du, J.1
Ling, C.C.2
-
12
-
-
0015330635
-
Theoretical improvements in algorithmic efficiency for network flow problems
-
J. Edmonds and R. Karp, "Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems," J. the ACM, vol. 19, pp. 248-264, 1972.
-
(1972)
J. The ACM
, vol.19
, pp. 248-264
-
-
Edmonds, J.1
Karp, R.2
-
14
-
-
83055186761
-
Do they belong to the same class: Active learning by querying pairwise label homogeneity
-
Y. Fu, B. Li, X. Zhu, and C. Zhang, "Do They Belong to the Same Class: Active Learning by Querying Pairwise Label Homogeneity," Proc. 20th ACM Int'l Conf. Information and Knowledge Management (CIKM), pp. 2161-2164, 2011.
-
(2011)
Proc. 20th ACM Int'l Conf. Information and Knowledge Management (CIKM)
, pp. 2161-2164
-
-
Fu, Y.1
Li, B.2
Zhu, X.3
Zhang, C.4
-
15
-
-
84876057388
-
A survey on instance selection for active learning
-
Y. Fu, X. Zhu, and B. Li, "A Survey on Instance Selection for Active Learning," Knowledge and Information Systems, vol. 35, pp. 249-283, 2013.
-
(2013)
Knowledge and Information Systems
, vol.35
, pp. 249-283
-
-
Fu, Y.1
Zhu, X.2
Li, B.3
-
17
-
-
34250745927
-
Batch mode active learning and its application to medical image classification
-
S. Hoi, R. Jin, J. Zhu, and M. Lyu, "Batch Mode Active Learning and its Application to Medical Image Classification," Proc. Int'l Conf. Machine Learning (ICML '06), 2006.
-
(2006)
Proc. Int'l Conf. Machine Learning (ICML '06)
-
-
Hoi, S.1
Jin, R.2
Zhu, J.3
Lyu, M.4
-
18
-
-
1942484960
-
Transductive learning via spectral graph partitioning
-
T. Joachims, "Transductive Learning via Spectral Graph Partitioning," Proc. Int'l Conf. Machine Learning (ICML), pp. 290-297, 2003.
-
(2003)
Proc. Int'l Conf. Machine Learning (ICML)
, pp. 290-297
-
-
Joachims, T.1
-
21
-
-
21844432939
-
Active learning to recognize multiple types of plankton
-
T. Luo, K. Kramer, D. B. Goldgof, S. Samson, A. Remsen, T. Hopkins, and D. Cohn, "Active Learning to Recognize Multiple Types of Plankton," Machine Learning Research, vol. 6, pp. 589-613, 2005.
-
(2005)
Machine Learning Research
, vol.6
, pp. 589-613
-
-
Luo, T.1
Kramer, K.2
Goldgof, D.B.3
Samson, S.4
Remsen, A.5
Hopkins, T.6
Cohn, D.7
-
26
-
-
71149084080
-
Supervised learning from multiple experts: Whom to trust when everyone lies a bit
-
V. C. Raykar, S. Yu, L. Zhao, A. Jerebko, C. Florin, G. Hermosillo-Valadez, L. Bogoni, and L. Moy, "Supervised Learning from Multiple Experts: Whom to Trust when Everyone Lies a Bit," Proc. 26th Ann. Int'l Conf. Machine Learning (ICML), 2009.
-
(2009)
Proc. 26th Ann. Int'l Conf. Machine Learning (ICML)
-
-
Raykar, V.C.1
Yu, S.2
Zhao, L.3
Jerebko, A.4
Florin, C.5
Hermosillo-Valadez, G.6
Bogoni, L.7
Moy, L.8
-
27
-
-
0442319140
-
Toward optimal active learning through sampling estimation of error reduction
-
N. Roy and A. McCallum, "Toward Optimal Active Learning through Sampling Estimation of Error Reduction," Proc. Int'l Conf. Machine Learning (ICML'01), pp. 441-448, 2001.
-
(2001)
Proc. Int'l Conf. Machine Learning (ICML'01)
, pp. 441-448
-
-
Roy, N.1
McCallum, A.2
-
28
-
-
0141425902
-
Incorporating prior knowledge into boosting
-
R. Schapire, M. Rochery, M. Rahim, and N. Gupta, "Incorporating Prior Knowledge into Boosting," Proc. Int'l Conf. Machine Learning (ICML '02), 2002.
-
(2002)
Proc. Int'l Conf. Machine Learning (ICML '02)
-
-
Schapire, R.1
Rochery, M.2
Rahim, M.3
Gupta, N.4
-
29
-
-
68949137209
-
Active learning literature survey
-
B. Settles, "Active Learning Literature Survey," Technical Report 1648, 2009.
-
(2009)
Technical Report 1648
-
-
Settles, B.1
-
31
-
-
0026981853
-
Query by committee
-
H. Seung, M. Opper, and H. Sompolinsky, "Query by Committee," Proc. Int'l Conf. Learning Theory (COLT '02), pp. 287-294, 2002.
-
(2002)
Proc. Int'l Conf. Learning Theory (COLT '02)
, pp. 287-294
-
-
Seung, H.1
Opper, M.2
Sompolinsky, H.3
-
32
-
-
65449144451
-
Get another label improving data quality and data mining using multiple, noisy labelers
-
V. S. Sheng, F. Provost, and P. G. Ipeirotis, "Get Another Label? Improving Data Quality and Data Mining Using Multiple, Noisy Labelers," Proc. 14th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD), 2008.
-
(2008)
Proc. 14th ACM SIGKDD Int'l Conf. Knowledge Discovery and Data Mining (KDD)
-
-
Sheng, V.S.1
Provost, F.2
Ipeirotis, P.G.3
-
33
-
-
0003007938
-
Support vector machine active learning with applications to text classification
-
S. Tong and D. Koller, "Support Vector Machine Active Learning with Applications to Text Classification," Proc. Int'l Conf. Machine Learning (ICML '00), pp. 999-1006, 2000.
-
(2000)
Proc. Int'l Conf. Machine Learning (ICML '00)
, pp. 999-1006
-
-
Tong, S.1
Koller, D.2
-
34
-
-
77955994660
-
Far-sighted active learning on a budget for image and video recognition
-
S. Vijayanarasimhan, P. Jain, and K. Grauman, "Far-Sighted Active Learning on a Budget for Image and Video Recognition," Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR), pp. 3035-3042, 2010.
-
(2010)
Proc. IEEE Conf. Computer Vision and Pattern Recognition (CVPR)
, pp. 3035-3042
-
-
Vijayanarasimhan, S.1
Jain, P.2
Grauman, K.3
-
35
-
-
84874086932
-
Who should label what instance allocation in multiple expert active learning
-
B. C. Wallace, K. Small, C. E. Brodley, and T. A. Trikalinos, "Who Should Label What? Instance Allocation in Multiple Expert Active Learning," Proc. SIAM Int'l Conf. Data Mining (SDM), 2011.
-
(2011)
Proc. SIAM Int'l Conf. Data Mining (SDM)
-
-
Wallace, B.C.1
Small, K.2
Brodley, C.E.3
Trikalinos, T.A.4
-
38
-
-
80053455236
-
Active learing from crowds
-
Y. Yan, R. Rosales, G. Fung, and D. Dy, "Active Learing from Crowds," Proc. Int'l Conf. Machine Learning, 2011.
-
(2011)
Proc. Int'l Conf. Machine Learning
-
-
Yan, Y.1
Rosales, R.2
Fung, G.3
Dy, D.4
-
40
-
-
79951749185
-
Active learning from multiple noisy labelers with varied costs
-
Y. Zheng, S. Scott, and K. Deng, "Active Learning from Multiple Noisy Labelers with Varied Costs," Proc. IEEE 10th Int'l Conf. Data Mining (ICDM), pp. 639-648, 2010.
-
(2010)
Proc. IEEE 10th Int'l Conf. Data Mining (ICDM)
, pp. 639-648
-
-
Zheng, Y.1
Scott, S.2
Deng, K.3
-
41
-
-
19544372918
-
Class noise vs. Attribute noise: A quantitative study of their impact
-
X. Zhu and X. Wu, "Class Noise vs. Attribute Noise: A Quantitative Study of their Impact," Artificial Intelligence Rev., vol. 22, pp. 177-210, 2004.
-
(2004)
Artificial Intelligence Rev.
, vol.22
, pp. 177-210
-
-
Zhu, X.1
Wu, X.2
-
42
-
-
49749138225
-
Active learning from data streams
-
X. Zhu, P. Zhang, X. Lin, and Y. Shi, "Active Learning from Data Streams," Proc. IEEE Seventh Int'l Conf. Data Mining (ICDM), pp. 757-7627, 2007.
-
(2007)
Proc. IEEE Seventh Int'l Conf. Data Mining (ICDM)
, pp. 757-7627
-
-
Zhu, X.1
Zhang, P.2
Lin, X.3
Shi, Y.4
-
43
-
-
78649975675
-
Active learning from stream data using optimal weight classifier ensemble
-
Dec.
-
X. Zhu, P. Zhang, Y. Shi, and X. Lin, "Active Learning from Stream Data Using Optimal Weight Classifier Ensemble," IEEE Trans. Systems, Man, and Cybernetics, Part B, vol. 40, no. 6, pp. 1607-1621, Dec. 2010.
-
(2010)
IEEE Trans. Systems, Man, and Cybernetics, Part B
, vol.40
, Issue.6
, pp. 1607-1621
-
-
Zhu, X.1
Zhang, P.2
Shi, Y.3
Lin, X.4
-
44
-
-
70450140768
-
Semi-Supervised Learning Literature Survey
-
X. Zhu, "Semi-Supervised Learning Literature Survey," Computer Sciences TR 1530, 2008.
-
(2008)
Computer Sciences TR 1530
-
-
Zhu, X.1
|