메뉴 건너뛰기




Volumn , Issue , 2013, Pages

Latent structured active learning

Author keywords

[No Author keywords available]

Indexed keywords

3D LAYOUTS; ACTIVE LEARNING; ACTIVE-LEARNING ALGORITHM; LABELED DATA; MARGINALS; SINGLE IMAGES; STRUCTURED PREDICTION; TRAINING SETS;

EID: 84898968890     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (120)

References (37)
  • 7
    • 84951933074 scopus 로고    scopus 로고
    • Reducing labeling effort for structured prediction tasks
    • A. Culotta and A. McCallum. Reducing labeling effort for structured prediction tasks. In Proc. AAAI, 2005.
    • (2005) Proc. AAAI
    • Culotta, A.1    McCallum, A.2
  • 8
    • 71149084538 scopus 로고    scopus 로고
    • Learning to segment from a few well-selected training images
    • A. Farhangfar, R. Greiner, and C. Szepesvari. Learning to Segment from a Few Well-Selected Training Images. In Proc. ICML, 2009.
    • (2009) Proc. ICML
    • Farhangfar, A.1    Greiner, R.2    Szepesvari, C.3
  • 9
    • 84898437287 scopus 로고    scopus 로고
    • Combining self training and active learning for video segmentation
    • A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg. Combining Self Training and Active Learning for Video Segmentation. In Proc. BMVC, 2011.
    • (2011) Proc. BMVC
    • Fathi, A.1    Balcan, M.F.2    Ren, X.3    Rehg, J.M.4
  • 10
    • 78649384136 scopus 로고    scopus 로고
    • Norm-product belief propagation: Primal-dual message-passing for lprelaxation and approximate-inference
    • T. Hazan and A. Shashua. Norm-Product Belief Propagation: Primal-Dual Message-Passing for LPRelaxation and Approximate-Inference. Trans. Information Theory, 2010.
    • (2010) Trans. Information Theory
    • Hazan, T.1    Shashua, A.2
  • 11
    • 85162009902 scopus 로고    scopus 로고
    • A primal-dual message-passing algorithm for approximated large scale structured prediction
    • T. Hazan and R. Urtasun. A Primal-Dual Message-Passing Algorithm for Approximated Large Scale Structured Prediction. In Proc. NIPS, 2010.
    • (2010) Proc. NIPS
    • Hazan, T.1    Urtasun, R.2
  • 12
    • 77953216235 scopus 로고    scopus 로고
    • Recovering the spatial layout of cluttered rooms
    • V. Hedau, D. Hoiem, and D. A. Forsyth. Recovering the Spatial Layout of Cluttered Rooms . In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Hedau, V.1    Hoiem, D.2    Forsyth, D.A.3
  • 13
    • 34547216923 scopus 로고    scopus 로고
    • Recovering surface layout from an image
    • D. Hoiem, A. A. Efros, and M. Hebert. Recovering Surface Layout from an Image. IJCV, 2007.
    • (2007) IJCV
    • Hoiem, D.1    Efros, A.A.2    Hebert, M.3
  • 14
    • 50649102302 scopus 로고    scopus 로고
    • Active learning with gaussian processes for object categorization
    • A. Kapoor, K. Grauman, R. Urtasun, and T. Darrell. Active Learning with Gaussian Processes for Object Categorization . In Proc. ICCV, 2007.
    • (2007) Proc. ICCV
    • Kapoor, A.1    Grauman, K.2    Urtasun, R.3    Darrell, T.4
  • 15
    • 36248972102 scopus 로고    scopus 로고
    • Measuring uncertainty in graph cut solutions-efficiently computing min-marginal energies using dynamic graph cuts
    • P. Kohli and P. Torr. Measuring Uncertainty in Graph Cut Solutions-Efficiently Computing Min-marginal Energies using Dynamic Graph Cuts. In Proc. ECCV, 2006.
    • (2006) Proc. ECCV
    • Kohli, P.1    Torr, P.2
  • 16
    • 0142192295 scopus 로고    scopus 로고
    • Conditional random fields: Probabilistic models for segmenting and labeling sequence data
    • J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting and labeling sequence data. In Proc. ICML, 2001.
    • (2001) Proc. ICML
    • Lafferty, J.1    McCallum, A.2    Pereira, F.3
  • 17
    • 85161973668 scopus 로고    scopus 로고
    • Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces
    • D. C. Lee, A. Gupta, M. Hebert, and T. Kanade. Estimating Spatial Layout of Rooms using Volumetric Reasoning about Objects and Surfaces. In Proc. NIPS, 2010.
    • (2010) Proc. NIPS
    • Lee, D.C.1    Gupta, A.2    Hebert, M.3    Kanade, T.4
  • 18
    • 70450207187 scopus 로고    scopus 로고
    • Geometric reasoning for single image structure recovery
    • D. C. Lee, M. Hebert, and T. Kanade. Geometric Reasoning for Single Image Structure Recovery. In Proc. CVPR, 2009.
    • (2009) Proc. CVPR
    • Lee, D.C.1    Hebert, M.2    Kanade, T.3
  • 19
    • 85124125604 scopus 로고
    • Heterogeneous uncertainty sampling for supervised learning
    • D. Lewis and J. Catlett. Heterogeneous uncertainty sampling for supervised learning. In Proc. ICML, 1994.
    • (1994) Proc. ICML
    • Lewis, D.1    Catlett, J.2
  • 21
    • 80052877810 scopus 로고    scopus 로고
    • Learning structured prediction models for interactive image labeling
    • T. Mensink, J. Verbeek, and G. Csurka. Learning Structured Prediction Models for Interactive Image Labeling. In Proc. CVPR, 2011.
    • (2011) Proc. CVPR
    • Mensink, T.1    Verbeek, J.2    Csurka, G.3
  • 22
    • 79952317581 scopus 로고    scopus 로고
    • Margin-based active learning for structured output spaces
    • D. Roth and K. Small. Margin-based Active Learning for Structured Output Spaces. In Proc. ECML, 2006.
    • (2006) Proc. ECML
    • Roth, D.1    Small, K.2
  • 23
    • 84877632511 scopus 로고    scopus 로고
    • Grabcut interactive foreground extraction using iterated graph cuts
    • C. Rother, V. Kolmogorov, and A. Blake. GrabCut Interactive Foreground Extraction using Iterated Graph Cuts. In Proc. SIGGRAPH, 2004.
    • (2004) Proc. SIGGRAPH
    • Rother, C.1    Kolmogorov, V.2    Blake, A.3
  • 24
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction. In Proc. ICML, 2001.
    • (2001) Proc. ICML
    • Roy, N.1    McCallum, A.2
  • 27
    • 84866689506 scopus 로고    scopus 로고
    • Efficient structured prediction for 3d indoor scene understanding
    • A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Efficient Structured Prediction for 3D Indoor Scene Understanding. In Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Schwing, A.G.1    Hazan, T.2    Pollefeys, M.3    Urtasun, R.4
  • 28
    • 84867113207 scopus 로고    scopus 로고
    • Efficient structured prediction with latent variables for general graphical models
    • A. G. Schwing, T. Hazan, M. Pollefeys, and R. Urtasun. Efficient Structured Prediction with Latent Variables for General Graphical Models. In Proc. ICML, 2012.
    • (2012) Proc ICML
    • Schwing, A.G.1    Hazan, T.2    Pollefeys, M.3    Urtasun, R.4
  • 30
    • 84867138308 scopus 로고    scopus 로고
    • Online structured prediction via coactive learning
    • P. Shivaswamy and T. Joachims. Online Structured Prediction via Coactive Learning. In Proc. ICML, 2012.
    • (2012) Proc ICML
    • Shivaswamy, P.1    Joachims, T.2
  • 31
    • 77955986969 scopus 로고    scopus 로고
    • Beyond active noun tagging: Modeling contextual interactions for multi-class active learning
    • B. Siddiquie and A. Gupta. Beyond Active Noun Tagging: Modeling Contextual Interactions for Multi-Class Active Learning. In Proc. CVPR, 2010.
    • (2010) Proc. CVPR
    • Siddiquie, B.1    Gupta, A.2
  • 32
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller. Support vector machine active learning with applications to text classification. JMLR, 2001.
    • (2001) JMLR
    • Tong, S.1    Koller, D.2
  • 33
    • 24944537843 scopus 로고    scopus 로고
    • Large margin methods for structured and interdependent output variables
    • I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large Margin Methods for Structured and Interdependent Output Variables. JMLR, 2005.
    • (2005) JMLR
    • Tsochantaridis, I.1    Joachims, T.2    Hofmann, T.3    Altun, Y.4
  • 34
    • 84866706762 scopus 로고    scopus 로고
    • Active learning for semantic segmentation with expected change
    • A. Vezhnevets, V. Ferrari, and J. M. Buhmann. Active Learning for Semantic Segmentation with Expected Change. In Proc. CVPR, 2012.
    • (2012) Proc. CVPR
    • Vezhnevets, A.1    Ferrari, V.2    Buhmann, J.M.3
  • 35
    • 80055035149 scopus 로고    scopus 로고
    • Cost-sensitive active visual category learning
    • S. Vijayanarasimhan and K. Grauman. Cost-Sensitive Active Visual Category Learning. IJCV, 2010.
    • (2010) IJCV
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 36
    • 84898797894 scopus 로고    scopus 로고
    • Active frame selection for label propagation in videos
    • S. Vijayanarasimhan and K. Grauman. Active Frame Selection for Label Propagation in Videos. In Proc. ECCV, 2012.
    • (2012) Proc. ECCV
    • Vijayanarasimhan, S.1    Grauman, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.