메뉴 건너뛰기




Volumn , Issue , 2013, Pages 89-94

Combining Semi-Supervised and active learning for hyperspectral image classification

Author keywords

active learning; hyperspectral classification; remote sensing; semi supervised learning

Indexed keywords

ACTIVE LEARNING; HIGH DIMENSIONAL FEATURE; HYPER-SPECTRAL CLASSIFICATION; HYPERSPECTRAL IMAGE CLASSIFICATION; QUERY STRATEGIES; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; STATE-OF-THE-ART ALGORITHMS;

EID: 84885613809     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIDM.2013.6597222     Document Type: Conference Paper
Times cited : (19)

References (33)
  • 1
    • 33748781181 scopus 로고    scopus 로고
    • Estimation of citrus yield from airborne hyperspectral images using a neural network model
    • Ye, Xujun, Kenshi Sakai, Leroy Ortega Garciano, Shin-Ichi Asada, and Akira Sasao. "Estimation of citrus yield from airborne hyperspectral images using a neural network model." Ecological modelling 198, no. 3 (2006): 426-432.
    • (2006) Ecological Modeling , vol.198 , Issue.3 , pp. 426-432
    • Ye, X.1    Sakai, K.2    Garciano, L.O.3    Asada, S.-I.4    Sasao, A.5
  • 2
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani, Farid, and Lorenzo Bruzzone. "Classification of hyperspectral remote sensing images with support vector machines." Geoscience and Remote Sensing, IEEE Transactions on 42, no. 8 (2004): 1778-1790.
    • (2004) Geoscience and Remote Sensing, IEEE Transactions on , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 3
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes, G. "On the mean accuracy of statistical pattern recognizers." Information Theory, IEEE Transactions on 14, no. 1 (1968): 55-63.
    • (1968) Information Theory, IEEE Transactions on , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 6
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," J. Mach. Learn. Res., vol. 2, pp.45-66, 2001.
    • (2001) J. Mach. Learn. Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 7
    • 22544470628 scopus 로고    scopus 로고
    • Active learning: Theory and applications to automatic speech recognition
    • Riccardi, Giuseppe, and Dilek Hakkani-Tur. "Active learning: Theory and applications to automatic speech recognition." Speech and Audio Processing, IEEE Transactions on 13.4 (2005): 504-511.
    • (2005) Speech and Audio Processing, IEEE Transactions on , vol.13 , Issue.4 , pp. 504-511
    • Riccardi, G.1    Hakkani-Tur, D.2
  • 10
    • 33749596578 scopus 로고    scopus 로고
    • Using co-training and self-training in semi-supervised multiple classifier systems
    • Didaci, Luca, and Fabio Roli. "Using co-training and self-training in semi-supervised multiple classifier systems." Structural, Syntactic, and Statistical Pattern Recognition (2006): 522-530.
    • (2006) Structural, Syntactic, and Statistical Pattern Recognition , pp. 522-530
    • Didaci, L.1    Roli, F.2
  • 11
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive svm for semisupervised classification of remote-sensing images
    • L.Bruzzone,Mingmin Chi, M.Marconcini,"A Novel Transductive SVM for Semisupervised Classification of Remote-Sensing Images",IEEE Transactions on Geoscience and Remote Sensing, 2006, vol.44, no.11. pp.3363-3373
    • (2006) IEEE Transactions on Geoscience and Remote Sensing , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 13
    • 84856674640 scopus 로고    scopus 로고
    • Samplebased software defect prediction with active and semi-supervised learning
    • Li, Ming, Hongyu Zhang, Rongxin Wu, and Zhi-Hua Zhou. "Samplebased software defect prediction with active and semi-supervised learning." Automated Software Engineering 19, no. 2 (2012): 201-230.
    • (2012) Automated Software Engineering , vol.19 , Issue.2 , pp. 201-230
    • Li, M.1    Zhang, H.2    Wu, R.3    Zhou, Z.-H.4
  • 14
    • 33746834100 scopus 로고    scopus 로고
    • Enhancing relevance feedback in image retrieval using unlabeled data
    • Z.-H. Zhou, K.-J. Chen, and H.-B. Dai. "Enhancing relevance feedback in image retrieval using unlabeled data". ACM Transactions on Information Systems, 2006, 24(2): 219-244.
    • (2006) ACM Transactions on Information Systems , vol.24 , Issue.2 , pp. 219-244
    • Zhou, Z.-H.1    Chen, K.-J.2    Dai, H.-B.3
  • 15
  • 19
    • 79957458331 scopus 로고    scopus 로고
    • Active learning via multi-view and local proximity co-regularization for hyperspectral image classification
    • W. Di and M. Crawford, "Active Learning via Multi-view and Local Proximity Co-regularization for Hyperspectral Image Classification ", IEEE journal of Selected Topics in Signal Processing,issue.99, 2011.
    • (2011) IEEE Journal of Selected Topics in Signal Processing , Issue.99
    • Di, W.1    Crawford, M.2
  • 20
    • 56449102315 scopus 로고    scopus 로고
    • On multi-view active learning and the combination with semi-supervised learning
    • W. Wang and Z.-H. Zhou. "On multi-view active learning and the combination with semi-supervised learning". In ICML, pages 1152-1159, 2008.
    • (2008) ICML , pp. 1152-1159
    • Wang, W.1    Zhou, Z.-H.2
  • 21
    • 2942558578 scopus 로고    scopus 로고
    • Segmentation of multispectral remote sensing images using active support vector machines
    • Jul
    • P. Mitra, B. U. Shankar, and S. K. Pal, "Segmentation of multispectral remote sensing images using active support vector machines," Pattern Recognit. Lett., vol. 25, no. 9, pp. 1067-1074, Jul. 2004.
    • (2004) Pattern Recognit. Lett , vol.25 , Issue.9 , pp. 1067-1074
    • Mitra, P.1    Shankar, B.U.2    Pal, S.K.3
  • 22
    • 0003991806 scopus 로고    scopus 로고
    • New York: Wiley434-437, and 518-520
    • V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998, pp. 339-371, 434-437, and 518-520.
    • (1998) Statistical Learning Theory , pp. 339-371
    • Vapnik, V.N.1
  • 23
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong and D. Koller, "Support vector machine active learning with applications to text classification," J. Mach. Learn. Res., vol. 2, pp.45-66, 2001.
    • (2001) J. Mach. Learn. Res , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 24
    • 79952041537 scopus 로고    scopus 로고
    • Batch-mode active-learning methods for the interactive classification of remote sensing images
    • Demir, Begüm, Claudio Persello, and Lorenzo Bruzzone. "Batch-mode active-learning methods for the interactive classification of remote sensing images." Geoscience and Remote Sensing, IEEE Transactions on 49, no. 3 (2011): 1014-1031.
    • (2011) Geoscience and Remote Sensing, IEEE Transactions on , vol.49 , Issue.3 , pp. 1014-1031
    • Demir, B.1    Persello, C.2    Bruzzone, L.3
  • 25
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis, Sam T., and Lawrence K. Saul. "Nonlinear dimensionality reduction by locally linear embedding." Science 290, no. 5500 (2000): 2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 28
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • Zhou, Zhi-Hua, and Ming Li. "Tri-training: Exploiting unlabeled data using three classifiers." Knowledge and Data Engineering, IEEE Transactions on 17, no. 11 (2005): 1529-1541.
    • (2005) Knowledge and Data Engineering, IEEE Transactions on , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 30
    • 78650890336 scopus 로고    scopus 로고
    • Recent trends in classification of remote sensing data: Active and semisupervised machine learning paradigms
    • IEEE
    • L. Bruzzonhe, C. Persello, "Recent trends in classification of remote sensing data:active and semisupervised machine learning paradigms" IGARSS 2010 IEEE, pp.3720-3723
    • (2010) IGARSS , pp. 3720-3723
    • Bruzzonhe, L.1    Persello, C.2
  • 31
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Mar
    • J. Ham, Y. Chen, M. M. Crawford, and J. Ghosh, "Investigation of the random forest framework for classification of hyperspectral data," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 492-501, Mar. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 32
    • 30344462709 scopus 로고    scopus 로고
    • Results from the eo1 experimenta comparative study of earth observing1 advanced land imager (ali) and landsat etm+ data for land cover mapping in the okavango delta, botswana
    • Neuenschwander, Amy L., Melba M. Crawford, and Susan Ringrose. "Results from the EO1 experimentA comparative study of Earth Observing1 Advanced Land Imager (ALI) and Landsat ETM+ data for land cover mapping in the Okavango Delta, Botswana." International journal of remote sensing 26, no. 19 (2005): 4321-4337.
    • (2005) International Journal of Remote Sensing , vol.26 , Issue.19 , pp. 4321-4337
    • Neuenschwander, A.L.1    Crawford, M.M.2    Ringrose, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.