메뉴 건너뛰기




Volumn 3, Issue , 2012, Pages 2348-2356

Bayesian active learning with localized priors for fast receptive field characterization

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE LEARNING METHODS; COMPUTATIONALLY EFFICIENT; CONDITIONALLY GAUSSIAN; MARKOV CHAIN MONTE CARLO SAMPLINGS; PARTICLE FILTERING; POSTERIOR DISTRIBUTIONS; POSTERIOR UNCERTAINTIES; REAL-TIME EXPERIMENT;

EID: 84877778022     PISSN: 10495258     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (22)

References (15)
  • 1
    • 0000695404 scopus 로고
    • Information-based objective functions for active data selection
    • D. J. C. MacKay. Information-based objective functions for active data selection. Neural Computation, 4(4):590-604, 1992.
    • (1992) Neural Computation , vol.4 , Issue.4 , pp. 590-604
    • MacKay, D.J.C.1
  • 2
    • 84972528615 scopus 로고
    • Bayesian experimental design: A review
    • K. Chaloner and I. Verdinelli. Bayesian experimental design: a review. Statistical Science, 10:273-304, 1995.
    • (1995) Statistical Science , vol.10 , pp. 273-304
    • Chaloner, K.1    Verdinelli, I.2
  • 4
    • 0020713980 scopus 로고
    • QUEST: A Bayesian adaptive psychophysical method
    • A. Watson and D. Pelli. QUEST: a Bayesian adaptive psychophysical method. Perception and Psychophysics, 33:113-120, 1983.
    • (1983) Perception and Psychophysics , vol.33 , pp. 113-120
    • Watson, A.1    Pelli, D.2
  • 5
    • 18744390761 scopus 로고    scopus 로고
    • Asymptotic theory of information-theoretic experimental design
    • L. Paninski. Asymptotic theory of information-theoretic experimental design. Neural Computation, 17(7):1480-1507, 2005.
    • (2005) Neural Computation , vol.17 , Issue.7 , pp. 1480-1507
    • Paninski, L.1
  • 6
    • 63249126388 scopus 로고    scopus 로고
    • Sequential optimal design of neurophysiology experiments
    • J. Lewi, R. Butera, and L. Paninski. Sequential optimal design of neurophysiology experiments. Neural Computation, 21(3):619-687, 2009.
    • (2009) Neural Computation , vol.21 , Issue.3 , pp. 619-687
    • Lewi, J.1    Butera, R.2    Paninski, L.3
  • 7
    • 12544253489 scopus 로고    scopus 로고
    • A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects
    • W. Truccolo, U. T. Eden, M. R. Fellows, J. P. Donoghue, and E. N. Brown. A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. J. Neurophysiol, 93(2):1074-1089, 2005.
    • (2005) J. Neurophysiol , vol.93 , Issue.2 , pp. 1074-1089
    • Truccolo, W.1    Eden, U.T.2    Fellows, M.R.3    Donoghue, J.P.4    Brown, E.N.5
  • 8
    • 84898946956 scopus 로고    scopus 로고
    • Evidence optimization techniques for estimating stimulus-response functions
    • M. Sahani and J. Linden. Evidence optimization techniques for estimating stimulus-response functions. NIPS, 15, 2003.
    • (2003) NIPS , vol.15
    • Sahani, M.1    Linden, J.2
  • 9
    • 80055065461 scopus 로고    scopus 로고
    • Receptive field inference with localized priors
    • M. Park and J. W. Pillow. Receptive field inference with localized priors. PLoS Comput Biol, 7(10):e1002219, 2011.
    • (2011) PLoS Comput Biol , vol.7 , Issue.10
    • Park, M.1    Pillow, J.W.2
  • 10
    • 84877767023 scopus 로고    scopus 로고
    • Bayesian active learning for classification and preference learning
    • abs/1112.5745
    • N. Houlsby, F. Huszar, Z. Ghahramani, and M. Lengyel. Bayesian active learning for classification and preference learning. CoRR, abs/1112.5745, 2011.
    • (2011) CoRR
    • Houlsby, N.1    Huszar, F.2    Ghahramani, Z.3    Lengyel, M.4
  • 11
    • 9744274025 scopus 로고    scopus 로고
    • Maximum likelihood estimation of cascade point-process neural encoding models
    • L. Paninski. Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15:243-262, 2004.
    • (2004) Network: Computation in Neural Systems , vol.15 , pp. 243-262
    • Paninski, L.1
  • 13
    • 78650608745 scopus 로고    scopus 로고
    • Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains
    • Jan.
    • J. W. Pillow, Y. Ahmadian, and L. Paninski. Model-based decoding, information estimation, and change-point detection techniques for multineuron spike trains. Neural Comput, 23(1):1-45, Jan 2011.
    • (2011) Neural Comput , vol.23 , Issue.1 , pp. 1-45
    • Pillow, J.W.1    Ahmadian, Y.2    Paninski, L.3
  • 15
    • 20444369637 scopus 로고    scopus 로고
    • Spatiotemporal elements of macaque v1 receptive fields
    • N. C. Rust, Schwartz O., J. A. Movshon, and Simoncelli E.P. Spatiotemporal elements of macaque v1 receptive fields. Neuron, 46(6):945-956, 2005.
    • (2005) Neuron , vol.46 , Issue.6 , pp. 945-956
    • Rust, N.C.1    Schwartz, O.2    Movshon, J.A.3    Simoncelli, E.P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.