메뉴 건너뛰기




Volumn 52, Issue 5, 2014, Pages 2746-2758

Double constrained NMF for hyperspectral unmixing

Author keywords

Clustering based regularization; hyperspectral unmixing; mixed pixel; nonnegative matrix factorization (NMF)

Indexed keywords

ELECTRICAL ENGINEERING; GEOLOGY;

EID: 84896314517     PISSN: 01962892     EISSN: None     Source Type: Journal    
DOI: 10.1109/TGRS.2013.2265322     Document Type: Article
Times cited : (124)

References (47)
  • 1
    • 14644403023 scopus 로고    scopus 로고
    • Multispectral land sensing: Where from, where to
    • Mar
    • D. Landgrebe, Multispectral land sensing: Where from, where to, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 414-421, Mar. 2005
    • (2005) IEEE Trans. Geosci. Remote Sens , vol.43 , Issue.3 , pp. 414-421
    • Landgrebe, D.1
  • 3
  • 6
    • 0002081183 scopus 로고
    • Automating spectral unmixing of AVIRIS data using convex geometry concepts
    • Workshop, R. O. Green, Ed
    • J. Boardman, Automating spectral unmixing of AVIRIS data using convex geometry concepts, in Proc. Summary 4th Annu. JPL Airborne Geosci. Workshop, R. O. Green, Ed., 1994, pp. 11-14
    • (1994) Proc. Summary 4th Annu. JPL Airborne Geosci , pp. 11-14
    • Boardman, J.1
  • 8
    • 16444373735 scopus 로고    scopus 로고
    • Vertex component analysis: A fast algorithm to unmix hyperspectral data
    • DOI 10.1109/TGRS.2005.844293
    • J. Nascimento and J. Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005 (Pubitemid 40476033)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.4 , pp. 898-910
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 9
    • 84887415911 scopus 로고    scopus 로고
    • A new growing method for simplex-based endmember extraction algorithm
    • Oct
    • C. Chang, C. Wu, W. Liu, and Y. Ouyang, A new growing method for simplex-based endmember extraction algorithm, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006
    • (2006) IEEE Trans. Geosci. Remote Sens , vol.44 , Issue.10 , pp. 2804-2819
    • Chang, C.1    Wu, C.2    Liu, W.3    Ouyang, Y.4
  • 11
    • 0035273728 scopus 로고    scopus 로고
    • Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
    • DOI 10.1109/36.911111, PII S0196289201020861
    • D. Heinz and C. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001 (Pubitemid 32400422)
    • (2001) IEEE Transactions on Geoscience and Remote Sensing , vol.39 , Issue.3 , pp. 529-545
    • Heinz, D.C.1    Chang, C.-I.2
  • 12
    • 57649229726 scopus 로고    scopus 로고
    • Analyzing hyperspectral data with independent component analysis
    • J. Bayliss, J. Gualtieri, and R. Cromp, Analyzing hyperspectral data with independent component analysis, in Proc. SPIE, 1997, vol. 3240, pp. 133-143
    • (1997) Proc. SPIE , vol.3240 , pp. 133-143
    • Bayliss, J.1    Gualtieri, J.2    Cromp, R.3
  • 13
    • 0033592606 scopus 로고    scopus 로고
    • Learning the parts of objects by nonnegative matrix factorization
    • Oct
    • D. Lee and H. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999
    • (1999) Nature , vol.401 , Issue.6755 , pp. 788-791
    • Lee, D.1    Seung, H.2
  • 14
    • 34547229626 scopus 로고    scopus 로고
    • Sparsity promoting iterated constrained endmember detection in hyperspeetral imagery
    • DOI 10.1109/LGRS.2007.895727
    • A. Zare and P. Gader, Sparsity promoting iterated constrained endmember detection in hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, Jul. 2007 (Pubitemid 47117457)
    • (2007) IEEE Geoscience and Remote Sensing Letters , vol.4 , Issue.3 , pp. 446-450
    • Zare, A.1    Gader, P.2
  • 15
    • 27844593728 scopus 로고    scopus 로고
    • Spectral linear mixing model in low spatial resolution image data
    • DOI 10.1109/TGRS.2005.848692
    • V. Haertel and Y. Shimabukuro, Spectral linear mixing model in low spatial resolution image data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 11, pp. 2555-2562, Nov. 2005 (Pubitemid 41640779)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.11 , pp. 2555-2562
    • Haertel, V.F.1    Shimabukuro, Y.E.2
  • 16
    • 0026191274 scopus 로고
    • Blind separation of sources, part I. An adaptive algorithm based on neuromimetic architecture
    • DOI 10.1016/0165-1684(91)90079-X
    • C. Jutten and J. Herault, Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture, Signal Process., vol. 24, no. 1, pp. 1-10, Jul. 1991 (Pubitemid 21679270)
    • (1991) Signal Processing , vol.24 , Issue.1 , pp. 1-10
    • Jutten Christian1    Herault Jeanny2
  • 17
    • 12844266861 scopus 로고    scopus 로고
    • Does independent component analysis play a role in unmixing hyperspectral data?
    • DOI 10.1109/TGRS.2004.839806
    • J. Nascimento and J. Dias, Does independent component analysis play a role in unmixing hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005 (Pubitemid 40162736)
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.1 , pp. 175-187
    • Nascimento, J.M.P.1    Dias, J.M.B.2
  • 18
    • 70350493345 scopus 로고    scopus 로고
    • Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
    • Nov
    • N. Dobigeon, S. Moussaoui, M. Coulon, J. Tourneret, and A. Hero, Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery, IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355-4368, Nov. 2009
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.11 , pp. 4355-4368
    • Dobigeon, N.1    Moussaoui, S.2    Coulon, M.3    Tourneret, J.4    Hero, A.5
  • 19
    • 80052775340 scopus 로고    scopus 로고
    • Hyperspectral unmixing based on mixtures of Dirichlet components
    • Mar
    • J. Nascimento and J. Bioucas-Dias, Hyperspectral unmixing based on mixtures of Dirichlet components, IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 863-878, Mar. 2012
    • (2012) IEEE Trans. Geosci. Remote Sens , vol.50 , Issue.3 , pp. 863-878
    • Nascimento, J.1    Bioucas-Dias, J.2
  • 20
    • 78649247062 scopus 로고    scopus 로고
    • Spatially-smooth piecewise convex endmember detection
    • A. Zare, O. Bchir, H. Frigui, and P. Gader, Spatially-smooth piecewise convex endmember detection, in Proc. IEEE WHISPERS, 2010, pp. 1-4
    • (2010) Proc IEEE WHISPERS , pp. 1-4
    • Zare, A.1    Bchir, O.2    Frigui, H.3    Gader, P.4
  • 21
    • 80053082734 scopus 로고    scopus 로고
    • Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering
    • A. Zare and P. Gader, Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering, in Proc. IEEE Int. Conf. Fuzzy Syst., 2011, pp. 741-746
    • (2011) Proc IEEE Int. Conf. Fuzzy Syst , pp. 741-746
    • Zare, A.1    Gader, P.2
  • 22
    • 77952555368 scopus 로고    scopus 로고
    • PCE: Piece-wise convex endmember detection
    • Jun
    • A. Zare and P. Gader, PCE: Piece-wise convex endmember detection, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2620-2632, Jun. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.6 , pp. 2620-2632
    • Zare, A.1    Gader, P.2
  • 23
    • 80955150938 scopus 로고    scopus 로고
    • Spatial-spectral unmixing using fuzzy local information
    • A. Zare, Spatial-spectral unmixing using fuzzy local information, in Proc. IEEE IGARSS, 2011, pp. 1139-1142
    • (2011) Proc IEEE IGARSS , pp. 1139-1142
    • Zare, A.1
  • 24
    • 84898964201 scopus 로고    scopus 로고
    • Algorithms for non-negative matrix factorization
    • Cambridge, MA, USA: MIT Press
    • D. Lee and H. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2001, pp. 556-562
    • (2001) Advances in Neural Information Processing Systems , pp. 556-562
    • Lee, D.1    Seung, H.2
  • 25
    • 33847703873 scopus 로고    scopus 로고
    • Unsupervised classification of remote sensing imagery with non-negative matrix factorization
    • C. Liou and K. Yang, Unsupervised classification of remote sensing imagery with non-negative matrix factorization, in Proc. ICONIP, 2005, pp. 280-285
    • (2005) Proc. ICONIP , pp. 280-285
    • Liou, C.1    Yang, K.2
  • 26
    • 78650876624 scopus 로고    scopus 로고
    • Recent developments in sparse hyperspectral unmixing
    • M. Iordache, A. Plaza, and J. Bioucas-Dias, Recent developments in sparse hyperspectral unmixing, in Proc. IEEE IGARSS, 2010, pp. 1281-1284
    • (2010) Proc IEEE IGARSS , pp. 1281-1284
    • Iordache, M.1    Plaza, A.2    Bioucas-Dias, J.3
  • 27
    • 84900510076 scopus 로고    scopus 로고
    • Non-negative matrix factorization with sparseness constraints
    • Dec
    • P. Hoyer, Non-negative matrix factorization with sparseness constraints, J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Dec. 2004
    • (2004) J. Mach. Learn. Res , vol.5 , pp. 1457-1469
    • Hoyer, P.1
  • 28
    • 33646682646 scopus 로고    scopus 로고
    • Nonnegative matrix factorization for spectral data analysis
    • DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
    • V. Pauca, J. Piper, and R. Plemmons, Nonnegative matrix factorization for spectral data analysis, Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, Jul. 2006 (Pubitemid 43737212)
    • (2006) Linear Algebra and Its Applications , vol.416 , Issue.1 , pp. 29-47
    • Pauca, V.P.1    Piper, J.2    Plemmons, R.J.3
  • 29
    • 33847733865 scopus 로고    scopus 로고
    • Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
    • DOI 10.1109/TGRS.2006.888466
    • L. Miao and H. Qi, Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007 (Pubitemid 46375748)
    • (2007) IEEE Transactions on Geoscience and Remote Sensing , vol.45 , Issue.3 , pp. 765-777
    • Miao, L.1    Qi, H.2
  • 30
    • 77952582975 scopus 로고    scopus 로고
    • Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
    • Jun
    • A. Huck, M. Guillaume, and J. Blanc-Talon, Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2590-2602, Jun. 2010
    • (2010) IEEE Trans. Geosci. Remote Sens , vol.48 , Issue.6 , pp. 2590-2602
    • Huck, A.1    Guillaume, M.2    Blanc-Talon, J.3
  • 31
    • 58149131252 scopus 로고    scopus 로고
    • Constrained nonnegative matrix factorization for hyperspectral unmixing
    • Jan
    • S. Jia and Y. Qian, Constrained nonnegative matrix factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009
    • (2009) IEEE Trans. Geosci. Remote Sens , vol.47 , Issue.1 , pp. 161-173
    • Jia, S.1    Qian, Y.2
  • 33
    • 80455174031 scopus 로고    scopus 로고
    • Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization
    • Nov
    • Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.11 , pp. 4282-4297
    • Qian, Y.1    Jia, S.2    Zhou, J.3    Robles-Kelly, A.4
  • 34
  • 35
    • 84885021995 scopus 로고    scopus 로고
    • Manifold regularized sparse NMF for hyperspectral unmixing
    • May
    • X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, Manifold regularized sparse NMF for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, May 2013
    • (2013) IEEE Trans. Geosci. Remote Sens , vol.51 , Issue.5 , pp. 2815-2826
    • Lu, X.1    Wu, H.2    Yuan, Y.3    Yan, P.4    Li, X.5
  • 37
    • 41849109165 scopus 로고    scopus 로고
    • Topology preserving non-negative matrix factorization for face recognition
    • DOI 10.1109/TIP.2008.918957
    • T. Zhang, B. Fang, Y. Tang, G. He, and J.Wen, Topology preserving nonnegative matrix factorization for face recognition, IEEE Trans. Imag. Process., vol. 17, no. 4, pp. 574-584, Apr. 2008 (Pubitemid 351493880)
    • (2008) IEEE Transactions on Image Processing , vol.17 , Issue.4 , pp. 574-584
    • Zhang, T.1    Fang, B.2    Tang, Y.Y.3    He, G.4    Wen, J.5
  • 40
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • J. MacQueen, Some methods for classification and analysis of multivariate observations, in Proc. 5th Berkeley Symp., 1967, vol. 1, pp. 281-297
    • (1967) Proc. 5th Berkeley Symp , vol.1 , pp. 281-297
    • Macqueen, J.1
  • 41
    • 1842481516 scopus 로고    scopus 로고
    • Estimation of number of spectrally distinct signal sources in hyperspectral imagery
    • Mar
    • C. Chang and Q. Du, Estimation of number of spectrally distinct signal sources in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004
    • (2004) IEEE Trans. Geosci. Remote Sens , vol.42 , Issue.3 , pp. 608-619
    • Chang, C.1    Du, Q.2
  • 42
    • 48849088937 scopus 로고    scopus 로고
    • Hyperspectral subspace identification
    • Aug
    • J. Dias and J. Nascimento, Hyperspectral subspace identification, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435-2445, Aug. 2008
    • (2008) IEEE Trans. Geosci. Remote Sens , vol.46 , Issue.8 , pp. 2435-2445
    • Dias, J.1    Nascimento, J.2
  • 43
    • 72049109460 scopus 로고    scopus 로고
    • A variable splitting augmented Lagrangian approach to linear spectral unmixing
    • Signal Process.: Evol. Remote Sens
    • J. Dias, A variable splitting augmented Lagrangian approach to linear spectral unmixing, in Proc. IEEE Workshop Hyperspectral Imag. Signal Process.: Evol. Remote Sens., 2009, pp. 1-4
    • (2009) Proc IEEE Workshop Hyperspectral Imag , pp. 1-4
    • Dias, J.1
  • 44
    • 70350488509 scopus 로고    scopus 로고
    • A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
    • Nov
    • T. Chan, C. Chi, Y. Huang, and W. Ma, A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing, IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.11 , pp. 4418-4432
    • Chan, T.1    Chi, C.2    Huang, Y.3    Ma, W.4
  • 46
    • 79952957026 scopus 로고    scopus 로고
    • Blind spectral unmixing based on sparse nonnegative matrix factorization
    • Apr
    • Z. Yang, G. Zhou, S. Xie, S. Ding, J. Yang, and J. Zhang, Blind spectral unmixing based on sparse nonnegative matrix factorization, IEEE Trans. Imag. Process., vol. 20, no. 4, pp. 1112-1125, Apr. 2011
    • (2011) IEEE Trans. Imag. Process , vol.20 , Issue.4 , pp. 1112-1125
    • Yang, Z.1    Zhou, G.2    Xie, S.3    Ding, S.4    Yang, J.5    Zhang, J.6
  • 47
    • 85027952549 scopus 로고    scopus 로고
    • An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
    • Feb
    • X. Liu, W. Xia, B. Wang, and L. Zhang, An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens , vol.49 , Issue.2 , pp. 757-772
    • Liu, X.1    Xia, W.2    Wang, B.3    Zhang, L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.