-
1
-
-
14644403023
-
Multispectral land sensing: Where from, where to
-
Mar
-
D. Landgrebe, Multispectral land sensing: Where from, where to, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 3, pp. 414-421, Mar. 2005
-
(2005)
IEEE Trans. Geosci. Remote Sens
, vol.43
, Issue.3
, pp. 414-421
-
-
Landgrebe, D.1
-
2
-
-
33847733255
-
-
Norwell, MA, USA: Kluwer ch. 3
-
G. Foody, Remote Sensing Image Analysis: Including the Spatial Domain. Norwell, MA, USA: Kluwer, 2004, ch. 3, pp. 37-49
-
(2004)
Remote Sensing Image Analysis: Including the Spatial Domain
, pp. 37-49
-
-
Foody, G.1
-
3
-
-
85032751930
-
Spectral unmixing
-
DOI 10.1109/79.974727
-
N. Keshava and J. Mustard, Spectral unmixing, IEEE Signal Process. Mag., vol. 19, no. 1, pp. 44-57, Jan. 2002 (Pubitemid 34237207)
-
(2002)
IEEE Signal Processing Magazine
, vol.19
, Issue.1
, pp. 44-57
-
-
Keshava, N.1
Mustard, J.F.2
-
5
-
-
84861772901
-
Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches
-
Apr
-
J. Bioucas-Dias, A. Plaza, N. Dobigeon, M. Parente, Q. Du, P. Gader, and J. Chanussot, Hyperspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches, IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012
-
(2012)
IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens
, vol.5
, Issue.2
, pp. 354-379
-
-
Bioucas-Dias, J.1
Plaza, A.2
Dobigeon, N.3
Parente, M.4
Du, Q.5
Gader, P.6
Chanussot, J.7
-
6
-
-
0002081183
-
Automating spectral unmixing of AVIRIS data using convex geometry concepts
-
Workshop, R. O. Green, Ed
-
J. Boardman, Automating spectral unmixing of AVIRIS data using convex geometry concepts, in Proc. Summary 4th Annu. JPL Airborne Geosci. Workshop, R. O. Green, Ed., 1994, pp. 11-14
-
(1994)
Proc. Summary 4th Annu. JPL Airborne Geosci
, pp. 11-14
-
-
Boardman, J.1
-
8
-
-
16444373735
-
Vertex component analysis: A fast algorithm to unmix hyperspectral data
-
DOI 10.1109/TGRS.2005.844293
-
J. Nascimento and J. Dias, Vertex component analysis: A fast algorithm to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 4, pp. 898-910, Apr. 2005 (Pubitemid 40476033)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.4
, pp. 898-910
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
9
-
-
84887415911
-
A new growing method for simplex-based endmember extraction algorithm
-
Oct
-
C. Chang, C. Wu, W. Liu, and Y. Ouyang, A new growing method for simplex-based endmember extraction algorithm, IEEE Trans. Geosci. Remote Sens., vol. 44, no. 10, pp. 2804-2819, Oct. 2006
-
(2006)
IEEE Trans. Geosci. Remote Sens
, vol.44
, Issue.10
, pp. 2804-2819
-
-
Chang, C.1
Wu, C.2
Liu, W.3
Ouyang, Y.4
-
10
-
-
7044222060
-
ICE: A statistical approach to identifying endmembers in hyperspectral images
-
Oct
-
M. Berman, H. Kiiveri, R. Lagerstrom, A. Ernst, R. Dunne, and J. Huntington, ICE: A statistical approach to identifying endmembers in hyperspectral images, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 10, pp. 2085-2095, Oct. 2004
-
(2004)
IEEE Trans. Geosci. Remote Sens
, vol.42
, Issue.10
, pp. 2085-2095
-
-
Berman, M.1
Kiiveri, H.2
Lagerstrom, R.3
Ernst, A.4
Dunne, R.5
Huntington, J.6
-
11
-
-
0035273728
-
Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery
-
DOI 10.1109/36.911111, PII S0196289201020861
-
D. Heinz and C. Chang, Fully constrained least squares linear spectral mixture analysis method for material quantification in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 39, no. 3, pp. 529-545, Mar. 2001 (Pubitemid 32400422)
-
(2001)
IEEE Transactions on Geoscience and Remote Sensing
, vol.39
, Issue.3
, pp. 529-545
-
-
Heinz, D.C.1
Chang, C.-I.2
-
12
-
-
57649229726
-
Analyzing hyperspectral data with independent component analysis
-
J. Bayliss, J. Gualtieri, and R. Cromp, Analyzing hyperspectral data with independent component analysis, in Proc. SPIE, 1997, vol. 3240, pp. 133-143
-
(1997)
Proc. SPIE
, vol.3240
, pp. 133-143
-
-
Bayliss, J.1
Gualtieri, J.2
Cromp, R.3
-
13
-
-
0033592606
-
Learning the parts of objects by nonnegative matrix factorization
-
Oct
-
D. Lee and H. Seung, Learning the parts of objects by nonnegative matrix factorization, Nature, vol. 401, no. 6755, pp. 788-791, Oct. 1999
-
(1999)
Nature
, vol.401
, Issue.6755
, pp. 788-791
-
-
Lee, D.1
Seung, H.2
-
14
-
-
34547229626
-
Sparsity promoting iterated constrained endmember detection in hyperspeetral imagery
-
DOI 10.1109/LGRS.2007.895727
-
A. Zare and P. Gader, Sparsity promoting iterated constrained endmember detection in hyperspectral imagery, IEEE Geosci. Remote Sens. Lett., vol. 4, no. 3, pp. 446-450, Jul. 2007 (Pubitemid 47117457)
-
(2007)
IEEE Geoscience and Remote Sensing Letters
, vol.4
, Issue.3
, pp. 446-450
-
-
Zare, A.1
Gader, P.2
-
15
-
-
27844593728
-
Spectral linear mixing model in low spatial resolution image data
-
DOI 10.1109/TGRS.2005.848692
-
V. Haertel and Y. Shimabukuro, Spectral linear mixing model in low spatial resolution image data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 11, pp. 2555-2562, Nov. 2005 (Pubitemid 41640779)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.11
, pp. 2555-2562
-
-
Haertel, V.F.1
Shimabukuro, Y.E.2
-
16
-
-
0026191274
-
Blind separation of sources, part I. An adaptive algorithm based on neuromimetic architecture
-
DOI 10.1016/0165-1684(91)90079-X
-
C. Jutten and J. Herault, Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic architecture, Signal Process., vol. 24, no. 1, pp. 1-10, Jul. 1991 (Pubitemid 21679270)
-
(1991)
Signal Processing
, vol.24
, Issue.1
, pp. 1-10
-
-
Jutten Christian1
Herault Jeanny2
-
17
-
-
12844266861
-
Does independent component analysis play a role in unmixing hyperspectral data?
-
DOI 10.1109/TGRS.2004.839806
-
J. Nascimento and J. Dias, Does independent component analysis play a role in unmixing hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 43, no. 1, pp. 175-187, Jan. 2005 (Pubitemid 40162736)
-
(2005)
IEEE Transactions on Geoscience and Remote Sensing
, vol.43
, Issue.1
, pp. 175-187
-
-
Nascimento, J.M.P.1
Dias, J.M.B.2
-
18
-
-
70350493345
-
Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery
-
Nov
-
N. Dobigeon, S. Moussaoui, M. Coulon, J. Tourneret, and A. Hero, Joint Bayesian endmember extraction and linear unmixing for hyperspectral imagery, IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4355-4368, Nov. 2009
-
(2009)
IEEE Trans. Signal Process
, vol.57
, Issue.11
, pp. 4355-4368
-
-
Dobigeon, N.1
Moussaoui, S.2
Coulon, M.3
Tourneret, J.4
Hero, A.5
-
19
-
-
80052775340
-
Hyperspectral unmixing based on mixtures of Dirichlet components
-
Mar
-
J. Nascimento and J. Bioucas-Dias, Hyperspectral unmixing based on mixtures of Dirichlet components, IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 863-878, Mar. 2012
-
(2012)
IEEE Trans. Geosci. Remote Sens
, vol.50
, Issue.3
, pp. 863-878
-
-
Nascimento, J.1
Bioucas-Dias, J.2
-
20
-
-
78649247062
-
Spatially-smooth piecewise convex endmember detection
-
A. Zare, O. Bchir, H. Frigui, and P. Gader, Spatially-smooth piecewise convex endmember detection, in Proc. IEEE WHISPERS, 2010, pp. 1-4
-
(2010)
Proc IEEE WHISPERS
, pp. 1-4
-
-
Zare, A.1
Bchir, O.2
Frigui, H.3
Gader, P.4
-
21
-
-
80053082734
-
Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering
-
A. Zare and P. Gader, Piece-wise convex spatial-spectral unmixing of hyperspectral imagery using possibilistic and fuzzy clustering, in Proc. IEEE Int. Conf. Fuzzy Syst., 2011, pp. 741-746
-
(2011)
Proc IEEE Int. Conf. Fuzzy Syst
, pp. 741-746
-
-
Zare, A.1
Gader, P.2
-
22
-
-
77952555368
-
PCE: Piece-wise convex endmember detection
-
Jun
-
A. Zare and P. Gader, PCE: Piece-wise convex endmember detection, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2620-2632, Jun. 2010
-
(2010)
IEEE Trans. Geosci. Remote Sens
, vol.48
, Issue.6
, pp. 2620-2632
-
-
Zare, A.1
Gader, P.2
-
23
-
-
80955150938
-
Spatial-spectral unmixing using fuzzy local information
-
A. Zare, Spatial-spectral unmixing using fuzzy local information, in Proc. IEEE IGARSS, 2011, pp. 1139-1142
-
(2011)
Proc IEEE IGARSS
, pp. 1139-1142
-
-
Zare, A.1
-
24
-
-
84898964201
-
Algorithms for non-negative matrix factorization
-
Cambridge, MA, USA: MIT Press
-
D. Lee and H. Seung, Algorithms for non-negative matrix factorization, in Advances in Neural Information Processing Systems. Cambridge, MA, USA: MIT Press, 2001, pp. 556-562
-
(2001)
Advances in Neural Information Processing Systems
, pp. 556-562
-
-
Lee, D.1
Seung, H.2
-
25
-
-
33847703873
-
Unsupervised classification of remote sensing imagery with non-negative matrix factorization
-
C. Liou and K. Yang, Unsupervised classification of remote sensing imagery with non-negative matrix factorization, in Proc. ICONIP, 2005, pp. 280-285
-
(2005)
Proc. ICONIP
, pp. 280-285
-
-
Liou, C.1
Yang, K.2
-
26
-
-
78650876624
-
Recent developments in sparse hyperspectral unmixing
-
M. Iordache, A. Plaza, and J. Bioucas-Dias, Recent developments in sparse hyperspectral unmixing, in Proc. IEEE IGARSS, 2010, pp. 1281-1284
-
(2010)
Proc IEEE IGARSS
, pp. 1281-1284
-
-
Iordache, M.1
Plaza, A.2
Bioucas-Dias, J.3
-
27
-
-
84900510076
-
Non-negative matrix factorization with sparseness constraints
-
Dec
-
P. Hoyer, Non-negative matrix factorization with sparseness constraints, J. Mach. Learn. Res., vol. 5, pp. 1457-1469, Dec. 2004
-
(2004)
J. Mach. Learn. Res
, vol.5
, pp. 1457-1469
-
-
Hoyer, P.1
-
28
-
-
33646682646
-
Nonnegative matrix factorization for spectral data analysis
-
DOI 10.1016/j.laa.2005.06.025, PII S002437950500340X
-
V. Pauca, J. Piper, and R. Plemmons, Nonnegative matrix factorization for spectral data analysis, Linear Algebra Appl., vol. 416, no. 1, pp. 29-47, Jul. 2006 (Pubitemid 43737212)
-
(2006)
Linear Algebra and Its Applications
, vol.416
, Issue.1
, pp. 29-47
-
-
Pauca, V.P.1
Piper, J.2
Plemmons, R.J.3
-
29
-
-
33847733865
-
Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization
-
DOI 10.1109/TGRS.2006.888466
-
L. Miao and H. Qi, Endmember extraction from highly mixed data using minimum volume constrained nonnegative matrix factorization, IEEE Trans. Geosci. Remote Sens., vol. 45, no. 3, pp. 765-777, Mar. 2007 (Pubitemid 46375748)
-
(2007)
IEEE Transactions on Geoscience and Remote Sensing
, vol.45
, Issue.3
, pp. 765-777
-
-
Miao, L.1
Qi, H.2
-
30
-
-
77952582975
-
Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data
-
Jun
-
A. Huck, M. Guillaume, and J. Blanc-Talon, Minimum dispersion constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 48, no. 6, pp. 2590-2602, Jun. 2010
-
(2010)
IEEE Trans. Geosci. Remote Sens
, vol.48
, Issue.6
, pp. 2590-2602
-
-
Huck, A.1
Guillaume, M.2
Blanc-Talon, J.3
-
31
-
-
58149131252
-
Constrained nonnegative matrix factorization for hyperspectral unmixing
-
Jan
-
S. Jia and Y. Qian, Constrained nonnegative matrix factorization for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 47, no. 1, pp. 161-173, Jan. 2009
-
(2009)
IEEE Trans. Geosci. Remote Sens
, vol.47
, Issue.1
, pp. 161-173
-
-
Jia, S.1
Qian, Y.2
-
32
-
-
79957667304
-
Sparse unmixing of hyperspectral data
-
Jun
-
M. Iordache, J. Bioucas-Dias, and A. Plaza, Sparse unmixing of hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 6, pp. 2014-2039, Jun. 2011
-
(2011)
IEEE Trans. Geosci. Remote Sens
, vol.49
, Issue.6
, pp. 2014-2039
-
-
Iordache, M.1
Bioucas-Dias, J.2
Plaza, A.3
-
33
-
-
80455174031
-
Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization
-
Nov
-
Y. Qian, S. Jia, J. Zhou, and A. Robles-Kelly, Hyperspectral unmixing via L1/2 sparsity-constrained nonnegative matrix factorization, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4282-4297, Nov. 2011
-
(2011)
IEEE Trans. Geosci. Remote Sens
, vol.49
, Issue.11
, pp. 4282-4297
-
-
Qian, Y.1
Jia, S.2
Zhou, J.3
Robles-Kelly, A.4
-
34
-
-
84860280270
-
L1/2 regularizer
-
Jun
-
Z. Xu, H. Zhang, Y. Wang, and Y. Chang, L1/2 regularizer, Sci. China Ser. F, vol. 53, no. 6, pp. 1159-1169, Jun. 2010
-
(2010)
Sci. China Ser. F
, vol.53
, Issue.6
, pp. 1159-1169
-
-
Xu, Z.1
Zhang, H.2
Wang, Y.3
Chang, Y.4
-
35
-
-
84885021995
-
Manifold regularized sparse NMF for hyperspectral unmixing
-
May
-
X. Lu, H. Wu, Y. Yuan, P. Yan, and X. Li, Manifold regularized sparse NMF for hyperspectral unmixing, IEEE Trans. Geosci. Remote Sens., vol. 51, no. 5, pp. 2815-2826, May 2013
-
(2013)
IEEE Trans. Geosci. Remote Sens
, vol.51
, Issue.5
, pp. 2815-2826
-
-
Lu, X.1
Wu, H.2
Yuan, Y.3
Yan, P.4
Li, X.5
-
36
-
-
80052896677
-
Sparsity-based image denoising via dictionary learning and structural clustering
-
W. Dong, X. Li, L. Zhang, and G. Shi, Sparsity-based image denoising via dictionary learning and structural clustering, in Proc. IEEE Int. Conf. Comput. Vis. Pattern Recognit., 2011, pp. 457-464
-
(2011)
Proc IEEE Int. Conf. Comput. Vis. Pattern Recognit
, pp. 457-464
-
-
Dong, W.1
Li, X.2
Zhang, L.3
Shi, G.4
-
37
-
-
41849109165
-
Topology preserving non-negative matrix factorization for face recognition
-
DOI 10.1109/TIP.2008.918957
-
T. Zhang, B. Fang, Y. Tang, G. He, and J.Wen, Topology preserving nonnegative matrix factorization for face recognition, IEEE Trans. Imag. Process., vol. 17, no. 4, pp. 574-584, Apr. 2008 (Pubitemid 351493880)
-
(2008)
IEEE Transactions on Image Processing
, vol.17
, Issue.4
, pp. 574-584
-
-
Zhang, T.1
Fang, B.2
Tang, Y.Y.3
He, G.4
Wen, J.5
-
38
-
-
1542347778
-
Document clustering based on nonnegative matrix factorization
-
W. Xu, X. Liu, and Y. Gong, Document clustering based on nonnegative matrix factorization, in Proc. 26th Annu. Int. ACM SIGIR Conf. Res. Dev. Inf. Retrieval, 2003, pp. 267-273
-
(2003)
Proc. 26th Annu. Int ACM SIGIR Conf. Res. Dev. Inf. Retrieval
, pp. 267-273
-
-
Xu, W.1
Liu, X.2
Gong, Y.3
-
39
-
-
2942588993
-
Text mining using non-negative matrix factorizations
-
V. Pauca, F. Shahnaz, M. Berry, and R. Plemmons, Text mining using non-negative matrix factorizations, in Proc. SIAM Int. Conf. Data Mining, 2004, pp. 452-456
-
(2004)
Proc SIAM Int. Conf. Data Mining
, pp. 452-456
-
-
Pauca, V.1
Shahnaz, F.2
Berry, M.3
Plemmons, R.4
-
40
-
-
0001457509
-
Some methods for classification and analysis of multivariate observations
-
J. MacQueen, Some methods for classification and analysis of multivariate observations, in Proc. 5th Berkeley Symp., 1967, vol. 1, pp. 281-297
-
(1967)
Proc. 5th Berkeley Symp
, vol.1
, pp. 281-297
-
-
Macqueen, J.1
-
41
-
-
1842481516
-
Estimation of number of spectrally distinct signal sources in hyperspectral imagery
-
Mar
-
C. Chang and Q. Du, Estimation of number of spectrally distinct signal sources in hyperspectral imagery, IEEE Trans. Geosci. Remote Sens., vol. 42, no. 3, pp. 608-619, Mar. 2004
-
(2004)
IEEE Trans. Geosci. Remote Sens
, vol.42
, Issue.3
, pp. 608-619
-
-
Chang, C.1
Du, Q.2
-
42
-
-
48849088937
-
Hyperspectral subspace identification
-
Aug
-
J. Dias and J. Nascimento, Hyperspectral subspace identification, IEEE Trans. Geosci. Remote Sens., vol. 46, no. 8, pp. 2435-2445, Aug. 2008
-
(2008)
IEEE Trans. Geosci. Remote Sens
, vol.46
, Issue.8
, pp. 2435-2445
-
-
Dias, J.1
Nascimento, J.2
-
43
-
-
72049109460
-
A variable splitting augmented Lagrangian approach to linear spectral unmixing
-
Signal Process.: Evol. Remote Sens
-
J. Dias, A variable splitting augmented Lagrangian approach to linear spectral unmixing, in Proc. IEEE Workshop Hyperspectral Imag. Signal Process.: Evol. Remote Sens., 2009, pp. 1-4
-
(2009)
Proc IEEE Workshop Hyperspectral Imag
, pp. 1-4
-
-
Dias, J.1
-
44
-
-
70350488509
-
A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing
-
Nov
-
T. Chan, C. Chi, Y. Huang, and W. Ma, A convex analysisbased minimum-volume enclosing simplex algorithm for hyperspectral unmixing, IEEE Trans. Signal Process., vol. 57, no. 11, pp. 4418-4432, Nov. 2009
-
(2009)
IEEE Trans. Signal Process
, vol.57
, Issue.11
, pp. 4418-4432
-
-
Chan, T.1
Chi, C.2
Huang, Y.3
Ma, W.4
-
45
-
-
0003751241
-
-
U.S. Geol. Surv., Denvor, CO, USA, Open File Rep
-
R. Clark, G. Swayze, A. Gallagher, T. King, andW. Calvin, The U.S. Geological Survey Digital Spectral Library: Version 1: 0.2 to 3.0 Microns, U.S. Geol. Surv., Denvor, CO, USA, Open File Rep. pp. 93-592, 1993
-
(1993)
The U.S. Geological Survey Digital Spectral Library: Version 1: 0.2 to 3.0 Microns
, pp. 93-592
-
-
Clark, R.1
Swayze, G.2
Gallagher, A.3
King Andw. Calvin, T.4
-
46
-
-
79952957026
-
Blind spectral unmixing based on sparse nonnegative matrix factorization
-
Apr
-
Z. Yang, G. Zhou, S. Xie, S. Ding, J. Yang, and J. Zhang, Blind spectral unmixing based on sparse nonnegative matrix factorization, IEEE Trans. Imag. Process., vol. 20, no. 4, pp. 1112-1125, Apr. 2011
-
(2011)
IEEE Trans. Imag. Process
, vol.20
, Issue.4
, pp. 1112-1125
-
-
Yang, Z.1
Zhou, G.2
Xie, S.3
Ding, S.4
Yang, J.5
Zhang, J.6
-
47
-
-
85027952549
-
An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data
-
Feb
-
X. Liu, W. Xia, B. Wang, and L. Zhang, An approach based on constrained nonnegative matrix factorization to unmix hyperspectral data, IEEE Trans. Geosci. Remote Sens., vol. 49, no. 2, pp. 757-772, Feb. 2011.
-
(2011)
IEEE Trans. Geosci. Remote Sens
, vol.49
, Issue.2
, pp. 757-772
-
-
Liu, X.1
Xia, W.2
Wang, B.3
Zhang, L.4
|