메뉴 건너뛰기




Volumn , Issue , 2014, Pages 564-571

Hierarchical subquery evaluation for active learning on a graph

Author keywords

active learning; semi supervised learning

Indexed keywords

BUDGET CONTROL; CLASSIFICATION (OF INFORMATION); GRAPH ALGORITHMS; PATTERN RECOGNITION;

EID: 84911449013     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2014.79     Document Type: Conference Paper
Times cited : (99)

References (42)
  • 1
    • 77955985702 scopus 로고    scopus 로고
    • ICoseg: Interactive co-segmentation with intelligent scribble guidance
    • D. Batra, A. Kowdle, D. Parikh, J. Luo, and T. Chen. iCoseg: Interactive co-segmentation with intelligent scribble guidance. CVPR, 2010.
    • (2010) CVPR
    • Batra, D.1    Kowdle, A.2    Parikh, D.3    Luo, J.4    Chen, T.5
  • 2
    • 0010805362 scopus 로고    scopus 로고
    • Learning from labeled and unlabeled data using graph mincuts
    • A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph mincuts. ICML, 2001.
    • (2001) ICML
    • Blum, A.1    Chawla, S.2
  • 3
    • 60849106960 scopus 로고    scopus 로고
    • Active learning for object classification: From exploration to exploitation
    • N. Cebron and M. R. Berthold. Active learning for object classification: from exploration to exploitation. Data Mining and Knowledge Discovery, 2009.
    • (2009) Data Mining and Knowledge Discovery
    • Cebron, N.1    Berthold, M.R.2
  • 5
    • 77956001395 scopus 로고    scopus 로고
    • Authority-shift clustering: Hierarchical clustering by authority seeking on graphs
    • M. Cho and K. MuLee. Authority-shift clustering: Hierarchical clustering by authority seeking on graphs. CVPR, 2010.
    • (2010) CVPR
    • Cho, M.1    Mulee, K.2
  • 6
    • 56449108037 scopus 로고    scopus 로고
    • Hierarchical sampling for active learning
    • S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. ICML, 2008.
    • (2008) ICML
    • Dasgupta, S.1    Hsu, D.2
  • 7
    • 84866645923 scopus 로고    scopus 로고
    • RALF: A reinforced active learning formulation for object class recognition
    • S. Ebert, M. Fritz, and B. Schiele. RALF: A reinforced active learning formulation for object class recognition. CVPR, 2012.
    • (2012) CVPR
    • Ebert, S.1    Fritz, M.2    Schiele, B.3
  • 8
    • 84898437287 scopus 로고    scopus 로고
    • Combining self training and active learning for video segmentation
    • A. Fathi, M. F. Balcan, X. Ren, and J. M. Rehg. Combining self training and active learning for video segmentation. BMVC, 2011.
    • (2011) BMVC
    • Fathi, A.1    Balcan, M.F.2    Ren, X.3    Rehg, J.M.4
  • 9
    • 33144466753 scopus 로고    scopus 로고
    • One-shot learning of object categories
    • L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. PAMI, 2006.
    • (2006) PAMI
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 10
    • 77955655063 scopus 로고    scopus 로고
    • Semi-supervised learning in gigantic image collections
    • R. Fergus, Y. Weiss, and A. Torralba. Semi-supervised learning in gigantic image collections. NIPS, 2009.
    • (2009) NIPS
    • Fergus, R.1    Weiss, Y.2    Torralba, A.3
  • 12
    • 85158059882 scopus 로고    scopus 로고
    • Manifold denoising
    • M. Hein and M. Maier. Manifold denoising. NIPS, 2006.
    • (2006) NIPS
    • Hein, M.1    Maier, M.2
  • 13
    • 85032996208 scopus 로고    scopus 로고
    • Stochastic neighbor embedding
    • G. Hinton and S. Roweis. Stochastic neighbor embedding. NIPS, 2002.
    • (2002) NIPS
    • Hinton, G.1    Roweis, S.2
  • 14
    • 84871822277 scopus 로고    scopus 로고
    • Finding rare classes: Active learning with generative and discriminative models
    • T. Hospedales, S. Gong, and T. Xiang. Finding rare classes: Active learning with generative and discriminative models. TKDE, 2013.
    • (2013) TKDE
    • Hospedales, T.1    Gong, S.2    Xiang, T.3
  • 16
    • 71149102018 scopus 로고    scopus 로고
    • Graph construction and b-matching for semi-supervised learning
    • T. Jebara, J. Wang, and S.-F. Chang. Graph construction and b-matching for semi-supervised learning. ICML, 2009.
    • (2009) ICML
    • Jebara, T.1    Wang, J.2    Chang, S.-F.3
  • 17
    • 70450181250 scopus 로고    scopus 로고
    • Multi-class active learning for image classification
    • A. J. Joshi, F. Porikli, and N. Papanikolopoulos. Multi-class active learning for image classification. CVPR, 2009.
    • (2009) CVPR
    • Joshi, A.J.1    Porikli, F.2    Papanikolopoulos, N.3
  • 18
    • 84911389324 scopus 로고    scopus 로고
    • Active frame location and detector selection for automated and manual video annotation
    • V. Karasev, A. Ravichandran, and S. Soatto. Active Frame, Location, and Detector Selection for Automated and Manual Video Annotation. CVPR, 2014.
    • (2014) CVPR
    • Karasev, V.1    Ravichandran, A.2    Soatto, S.3
  • 19
    • 33845572523 scopus 로고    scopus 로고
    • Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories
    • S. Lazebnik, C. Schmid, and J. Ponce. Beyond bags of features: Spatial pyramid matching for recognizing natural scene categories. CVPR, 2006.
    • (2006) CVPR
    • Lazebnik, S.1    Schmid, C.2    Ponce, J.3
  • 20
    • 84887354642 scopus 로고    scopus 로고
    • Adaptive active learning for image classification
    • X. Li and Y. Guo. Adaptive active learning for image classification. CVPR, 2013.
    • (2013) CVPR
    • Li, X.1    Guo, Y.2
  • 21
    • 78149310629 scopus 로고    scopus 로고
    • What, where and who? Classifying events by scene and object recognition
    • Li, Li-Jia and Fei-Fei, Li. What, where and who? classifying events by scene and object recognition. CVPR, 2007.
    • (2007) CVPR
    • Li-Jia, L.1    Li, F.2
  • 22
    • 77956555216 scopus 로고    scopus 로고
    • Large graph construction for scalable semi-supervised learning
    • W. Liu, J. He, and S.-F. Chang. Large graph construction for scalable semi-supervised learning. ICML, 2010.
    • (2010) ICML
    • Liu, W.1    He, J.2    Chang, S.-F.3
  • 23
    • 70350635917 scopus 로고    scopus 로고
    • Using graph-based metrics with empirical risk minimization to speed up active learning on networked data
    • S. A. Macskassy. Using graph-based metrics with empirical risk minimization to speed up active learning on networked data. KDD, 2009.
    • (2009) KDD
    • MacSkassy, S.A.1
  • 25
    • 80755187853 scopus 로고    scopus 로고
    • Platemate: Crowd-sourcing nutrition analysis from food photographs
    • J. Noronha, E. Hysen, H. Zhang, and K. Z. Gajos. Platemate: Crowd-sourcing nutrition analysis from food photographs. UIST, 2011.
    • (2011) UIST
    • Noronha, J.1    Hysen, E.2    Zhang, H.3    Gajos, K.Z.4
  • 26
    • 0442319140 scopus 로고    scopus 로고
    • Toward optimal active learning through sampling estimation of error reduction
    • N. Roy and A. McCallum. Toward optimal active learning through sampling estimation of error reduction. ICML, 2001.
    • (2001) ICML
    • Roy, N.1    McCallum, A.2
  • 29
    • 70350623321 scopus 로고    scopus 로고
    • Category detection using hierarchical mean shift
    • P. Vatturi and W.-K. Wong. Category detection using hierarchical mean shift. KDD, 2009.
    • (2009) KDD
    • Vatturi, P.1    Wong, W.-K.2
  • 30
    • 84866706762 scopus 로고    scopus 로고
    • Active learning for semantic segmentation with expected change
    • A. Vezhnevets, J. M. Buhmann, and V. Ferrari. Active learning for semantic segmentation with expected change. CVPR, 2012.
    • (2012) CVPR
    • Vezhnevets, A.1    Buhmann, J.M.2    Ferrari, V.3
  • 31
    • 80052905596 scopus 로고    scopus 로고
    • Large-scale live active learning: Training object detectors with crawled data and crowds
    • S. Vijayanarasimhan and K. Grauman. Large-scale live active learning: Training object detectors with crawled data and crowds. CVPR, 2011.
    • (2011) CVPR
    • Vijayanarasimhan, S.1    Grauman, K.2
  • 32
    • 85162335218 scopus 로고    scopus 로고
    • Video annotation and tracking with active learning
    • C. Vondrick and D. Ramanan. Video annotation and tracking with active learning. NIPS, 2011.
    • (2011) NIPS
    • Vondrick, C.1    Ramanan, D.2
  • 33
    • 36648998944 scopus 로고    scopus 로고
    • Label propagation through linear neighborhoods
    • F. Wang and C. Zhang. Label propagation through linear neighborhoods. TKDE, 2008.
    • (2008) TKDE
    • Wang, F.1    Zhang, C.2
  • 34
    • 51949094765 scopus 로고    scopus 로고
    • Active microscopic cellular image annotation by superposable graph transduction with imbalanced labels
    • J. Wang, S.-F. Chang, X. Zhou, and S. Wong. Active microscopic cellular image annotation by superposable graph transduction with imbalanced labels. CVPR, 2008.
    • (2008) CVPR
    • Wang, J.1    Chang, S.-F.2    Zhou, X.3    Wong, S.4
  • 35
    • 56449085512 scopus 로고    scopus 로고
    • Graph transduction via alternating minimization
    • J. Wang, T. Jebara, and S.-F. Chang. Graph transduction via alternating minimization. ICML, 2008.
    • (2008) ICML
    • Wang, J.1    Jebara, T.2    Chang, S.-F.3
  • 36
    • 84885964654 scopus 로고    scopus 로고
    • Fast graph construction using auction algorithm
    • J. Wang and Y. Xia. Fast graph construction using auction algorithm. UAI, 2012.
    • (2012) UAI
    • Wang, J.1    Xia, Y.2
  • 40
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaussian fields and harmonic functions. ICML, 2003.
    • (2003) ICML
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.3
  • 41
    • 31844438481 scopus 로고    scopus 로고
    • Harmonic mixtures: Combining mixture models and graph-based methods for inductive and scalable semi-supervised learning
    • X. Zhu and J. Lafferty. Harmonic mixtures: combining mixture models and graph-based methods for inductive and scalable semi-supervised learning. ICML, 2005.
    • (2005) ICML
    • Zhu, X.1    Lafferty, J.2
  • 42
    • 14344254639 scopus 로고    scopus 로고
    • Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions
    • X. Zhu, J. Lafferty, and Z. Ghahramani. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions. ICML workshops, 2003.
    • (2003) ICML Workshops
    • Zhu, X.1    Lafferty, J.2    Ghahramani, Z.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.