메뉴 건너뛰기




Volumn 293, Issue , 2015, Pages 275-298

Transductive active learning - A new semi-supervised learning approach based on iteratively refined generative models to capture structure in data

Author keywords

Generative modeling; Pool based active learning; Semi supervised learning; Separate components model; Shared components model; Transductive learning

Indexed keywords

CLUSTERING ALGORITHMS; ITERATIVE METHODS; LAKES; LEARNING SYSTEMS;

EID: 84922594422     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2014.09.009     Document Type: Article
Times cited : (44)

References (65)
  • 2
    • 0000710299 scopus 로고
    • Queries and concept learning
    • D. Angluin Queries and concept learning Machine Learn. 2 4 1988 319 342
    • (1988) Machine Learn. , vol.2 , Issue.4 , pp. 319-342
    • Angluin, D.1
  • 12
    • 60849106960 scopus 로고    scopus 로고
    • Active learning for object classification: From exploration to exploitation
    • N. Cebron, and M.R. Berthold Active learning for object classification: from exploration to exploitation Data Min. Knowl. Disc. 18 2 2009 283 299
    • (2009) Data Min. Knowl. Disc. , vol.18 , Issue.2 , pp. 283-299
    • Cebron, N.1    Berthold, M.R.2
  • 14
    • 0030221433 scopus 로고    scopus 로고
    • Neural network exploration using optimal experiment design
    • D.A. Cohn Neural network exploration using optimal experiment design Neural Netw. 9 6 1996 1071 1083
    • (1996) Neural Netw. , vol.9 , Issue.6 , pp. 1071-1083
    • Cohn, D.A.1
  • 15
    • 56449094571 scopus 로고    scopus 로고
    • Semi-supervised and active learning with the probabilistic RBF classifier
    • C. Constantinopoulos, and A. Likas Semi-supervised and active learning with the probabilistic RBF classifier Neurocomputing 71 13-15 2008 2489 2498
    • (2008) Neurocomputing , vol.71 , Issue.1315 , pp. 2489-2498
    • Constantinopoulos, C.1    Likas, A.2
  • 16
    • 9444262543 scopus 로고    scopus 로고
    • Efficient training algorithms for the probabilistic RBF network
    • G.A. Vouros, T. Panayiotopoulos, Lecture Notes in Computer Science Springer
    • C. Constantinopoulos, and A.C. Likas Efficient training algorithms for the probabilistic RBF network G.A. Vouros, T. Panayiotopoulos, Third Helenic Conference on Artificial Intelligence (SETN '04) Lecture Notes in Computer Science vol. 3025 2004 Springer 183 190
    • (2004) Third Helenic Conference on Artificial Intelligence (SETN '04) , vol.3025 , pp. 183-190
    • Constantinopoulos, C.1    Likas, A.C.2
  • 17
    • 33746874813 scopus 로고    scopus 로고
    • An incremental training method for the probabilistic RBF network
    • C. Constantinopoulos, and A.C. Likas An incremental training method for the probabilistic RBF network IEEE Trans. Neural Netw. 17 4 2006 966 974
    • (2006) IEEE Trans. Neural Netw. , vol.17 , Issue.4 , pp. 966-974
    • Constantinopoulos, C.1    Likas, A.C.2
  • 18
    • 34248648503 scopus 로고    scopus 로고
    • Unsupervised learning of Gaussian mixtures based on variational component splitting
    • C. Constantinopoulos, and A.C. Likas Unsupervised learning of Gaussian mixtures based on variational component splitting IEEE Trans. Neural Netw. 18 3 2007 745 755
    • (2007) IEEE Trans. Neural Netw. , vol.18 , Issue.3 , pp. 745-755
    • Constantinopoulos, C.1    Likas, A.C.2
  • 21
    • 0005986550 scopus 로고
    • Learning classification with unlabeled data
    • V. de Sa Learning classification with unlabeled data Adv. Neural Inform. Process. Syst. 6 1994 112 119
    • (1994) Adv. Neural Inform. Process. Syst. , vol.6 , pp. 112-119
    • De Sa, V.1
  • 24
    • 84894420816 scopus 로고    scopus 로고
    • Knowledge fusion for probabilistic generative classifiers with data mining applications
    • D. Fisch, E. Kalkowski, and B. Sick Knowledge fusion for probabilistic generative classifiers with data mining applications IEEE Trans. Knowl. Data Eng. 26 3 2014 652 666
    • (2014) IEEE Trans. Knowl. Data Eng. , vol.26 , Issue.3 , pp. 652-666
    • Fisch, D.1    Kalkowski, E.2    Sick, B.3
  • 26
    • 70449437193 scopus 로고    scopus 로고
    • Training of radial basis function classifiers with resilient propagation and variational Bayesian inference
    • Atlanta, GA
    • D. Fisch, B. Sick, Training of radial basis function classifiers with resilient propagation and variational Bayesian inference, in: International Joint Conference on Neural Networks (IJCNN '09), Atlanta, GA, 2009, pp. 838-847.
    • (2009) International Joint Conference on Neural Networks (IJCNN '09) , pp. 838-847
    • Fisch, D.1    Sick, B.2
  • 27
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • C. Fraley, and A.E. Raftery How many clusters? Which clustering method? Answers via model-based cluster analysis Comput. J. 41 8 1998 578 588
    • (1998) Comput. J. , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 31
    • 0001131390 scopus 로고    scopus 로고
    • Discriminant analysis by Gaussian mixtures
    • T. Hastie, and R. Tibshirani Discriminant analysis by Gaussian mixtures J. Roy. Stat. Soc. Ser. B 58 1 1996 155 176
    • (1996) J. Roy. Stat. Soc. Ser. B , vol.58 , Issue.1 , pp. 155-176
    • Hastie, T.1    Tibshirani, R.2
  • 33
    • 79961193287 scopus 로고    scopus 로고
    • Active learning with SVM
    • J. Ramón, R. Dopico, J. Dorado, A. Pazos (Eds.) IGI Global, Hershey, PA
    • J. Jun, I. Horace, Active learning with SVM, in: J. Ramón, R. Dopico, J. Dorado, A. Pazos (Eds.), Encyclopedia of Artificial Intelligence, vol. 3, IGI Global, Hershey, PA, 2009, pp. 1-7.
    • (2009) Encyclopedia of Artificial Intelligence , vol.3 , pp. 1-7
    • Jun, J.1    Horace, I.2
  • 34
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviors of support vector machines with Gaussian kernel
    • S.S. Keerthi, and C.-J. Lin Asymptotic behaviors of support vector machines with Gaussian kernel Neural Comput. 15 7 2003 1667 1689
    • (2003) Neural Comput. , vol.15 , Issue.7 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.-J.2
  • 37
    • 0034227415 scopus 로고    scopus 로고
    • Estimation of elliptical basis function parameters by the em algorithm with application to speaker verification
    • M.-W. Mak, and S.-Y. Kung Estimation of elliptical basis function parameters by the EM algorithm with application to speaker verification IEEE Trans. Neural Netw. 11 4 2000 961 969
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.4 , pp. 961-969
    • Mak, M.-W.1    Kung, S.-Y.2
  • 38
    • 0004066260 scopus 로고    scopus 로고
    • Wiley Series in Probability and Statistics New York, NY
    • G.J. McLachlan, and D. Peel Finite Mixture Models 2000 Wiley Series in Probability and Statistics New York, NY
    • (2000) Finite Mixture Models
    • McLachlan, G.J.1    Peel, D.2
  • 40
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • J. Moody, and C.J. Darken Fast learning in networks of locally-tuned processing units Neural Comput. 1 2 1989 281 294
    • (1989) Neural Comput. , vol.1 , Issue.2 , pp. 281-294
    • Moody, J.1    Darken, C.J.2
  • 47
    • 84874112602 scopus 로고    scopus 로고
    • Let us know your decision: Pool-based active training of a generative classifier with the selection strategy 4DS
    • T. Reitmaier, and B. Sick Let us know your decision: pool-based active training of a generative classifier with the selection strategy 4DS Inform. Sci. 230 2013 106 131
    • (2013) Inform. Sci. , vol.230 , pp. 106-131
    • Reitmaier, T.1    Sick, B.2
  • 49
    • 38049094034 scopus 로고
    • Probability of error of some adaptive pattern recognition machines
    • H.J. Scudder Probability of error of some adaptive pattern recognition machines Proc. IEEE Trans. Inform. Theory 1956 363 371
    • (1956) Proc. IEEE Trans. Inform. Theory , pp. 363-371
    • Scudder, H.J.1
  • 50
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • University of Wisconsin, Department of Computer Science
    • B. Settles, Active learning literature survey, Computer Sciences Technical Report 1648, University of Wisconsin, Department of Computer Science, 2009.
    • (2009) Computer Sciences Technical Report 1648
    • Settles, B.1
  • 51
    • 84873124152 scopus 로고    scopus 로고
    • From theories to queries: Active learning in practice
    • Sardinia, Italy
    • B. Settles, From theories to queries: active learning in practice, in: JMLR: Workshop and Conference Proceedings 16, Sardinia, Italy, 2011, pp. 1-18.
    • (2011) JMLR: Workshop and Conference Proceedings 16 , pp. 1-18
    • Settles, B.1
  • 55
    • 79952312481 scopus 로고    scopus 로고
    • Margin-based active learning for structured predictions
    • K. Small, and D. Roth Margin-based active learning for structured predictions Int. J. Machine Learn. Cybernet. 1 1-4 2010 413 424
    • (2010) Int. J. Machine Learn. Cybernet. , vol.1 , Issue.14 , pp. 413-424
    • Small, K.1    Roth, D.2
  • 56
    • 0028497290 scopus 로고
    • Maximum likelihood training of probabilistic neural networks.
    • R.L. Streit, and T.E. Luginbuhl Maximum likelihood training of probabilistic neural networks. IEEE Trans. Neural Netw. 5 5 1994 764 783
    • (1994) IEEE Trans. Neural Netw. , vol.5 , Issue.5 , pp. 764-783
    • Streit, R.L.1    Luginbuhl, T.E.2
  • 58
    • 0035440306 scopus 로고    scopus 로고
    • Shared kernel models for class conditional density estimation
    • M.K. Titsias, and A.C. Likas Shared kernel models for class conditional density estimation IEEE Trans. Neural Netw. 12 5 2001 987 997
    • (2001) IEEE Trans. Neural Netw. , vol.12 , Issue.5 , pp. 987-997
    • Titsias, M.K.1    Likas, A.C.2
  • 59
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong, and D. Koller Support vector machine active learning with applications to text classification J. Machine Learn. Res. 2 2002 45 66
    • (2002) J. Machine Learn. Res. , vol.2 , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 60
    • 84922594166 scopus 로고    scopus 로고
    • UCL (04/14/2014)
    • UCL, UCL/MLG Elena Database, < http://mlg.info.ucl.ac.be/index.php?page=Elena > (04/14/2014).
    • UCL/MLG Elena Database
  • 61
    • 84863463582 scopus 로고    scopus 로고
    • Maximum ambiguity-based sample selection in fuzzy decision tree induction
    • X.-Z. Wang, L.-C. Dong, and J.-H. Yan Maximum ambiguity-based sample selection in fuzzy decision tree induction IEEE Trans. Knowl. Data Eng. 24 8 2012 1491 1505
    • (2012) IEEE Trans. Knowl. Data Eng. , vol.24 , Issue.8 , pp. 1491-1505
    • Wang, X.-Z.1    Dong, L.-C.2    Yan, J.-H.3
  • 62
    • 16444383160 scopus 로고    scopus 로고
    • Survey of clustering algorithms
    • R. Xu, and D. Wunsch Survey of clustering algorithms IEEE Trans. Neural Netw. 16 3 2005 645 678
    • (2005) IEEE Trans. Neural Netw. , vol.16 , Issue.3 , pp. 645-678
    • Xu, R.1    Wunsch, D.2
  • 65
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • Z.-H. Zhou, and M. Li Tri-training: exploiting unlabeled data using three classifiers IEEE Trans. Knowl. Data Eng. 17 11 2005 1529 1541
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.