-
1
-
-
0001025146
-
Query learning strategies using boosting and bagging
-
Madison, WI
-
N. Abe, H. Mamitsuka, Query learning strategies using boosting and bagging, in: Proceedings of the Fifteenth International Conference on Machine Learning (ICML '98), Madison, WI, 1998, pp. 1-9.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning (ICML '98)
, pp. 1-9
-
-
Abe, N.1
Mamitsuka, H.2
-
2
-
-
0000710299
-
Queries and concept learning
-
D. Angluin Queries and concept learning Machine Learn. 2 4 1988 319 342
-
(1988)
Machine Learn.
, vol.2
, Issue.4
, pp. 319-342
-
-
Angluin, D.1
-
4
-
-
0003283879
-
Training connectionist networks with queries and selective sampling
-
Morgan Kaufmann Denver, CO
-
L. Atlas, D. Cohn, R. Ladner, M.A. El-Sharkawi, and R.J. Marks II Training connectionist networks with queries and selective sampling Advances in Neural Information Processing Systems 2 1990 Morgan Kaufmann Denver, CO 566 573
-
(1990)
Advances in Neural Information Processing Systems 2
, pp. 566-573
-
-
Atlas, L.1
Cohn, D.2
Ladner, R.3
El-Sharkawi, M.A.4
Marks, I.I.R.J.5
-
7
-
-
0031620208
-
Combining labeled and unlabeled data with co-training
-
New York, NY
-
A. Blum, T. Mitchell, Combining labeled and unlabeled data with co-training, in: Proceedings of the Eleventh Annual Conference on Computational Learning Theory, New York, NY, 1998, pp. 92-100.
-
(1998)
Proceedings of the Eleventh Annual Conference on Computational Learning Theory
, pp. 92-100
-
-
Blum, A.1
Mitchell, T.2
-
8
-
-
14344251008
-
Co-EM support vector learning
-
Banff, AB
-
U. Brefeld, T. Scheffer, Co-EM support vector learning, in: Proceedings of the Twenty-First International Conference on Machine Learning (ICML '04), Banff, AB, 2004, pp. 121-128.
-
(2004)
Proceedings of the Twenty-First International Conference on Machine Learning (ICML '04)
, pp. 121-128
-
-
Brefeld, U.1
Scheffer, T.2
-
9
-
-
34250726963
-
Fast and efficient training of RBF networks
-
Istanbul, Turkey
-
O. Buchtala, A. Hofmann, B. Sick, Fast and efficient training of RBF networks, in: Proceedings of the 13th International Conference on Artificial Neural Networks (ICANN'03), Istanbul, Turkey, 2003, pp. 43-51.
-
(2003)
Proceedings of the 13th International Conference on Artificial Neural Networks (ICANN'03)
, pp. 43-51
-
-
Buchtala, O.1
Hofmann, A.2
Sick, B.3
-
10
-
-
0141705681
-
A strategy for an efficient training of radial basis function networks for classification applications
-
Portland, OR
-
O. Buchtala, P. Neumann, B. Sick, A strategy for an efficient training of radial basis function networks for classification applications, in: Proceedings of the International Joint Conference on Neural Networks (IJCNN'03), Portland, OR, 2003, pp. 1025-1030.
-
(2003)
Proceedings of the International Joint Conference on Neural Networks (IJCNN'03)
, pp. 1025-1030
-
-
Buchtala, O.1
Neumann, P.2
Sick, B.3
-
12
-
-
60849106960
-
Active learning for object classification: From exploration to exploitation
-
N. Cebron, and M.R. Berthold Active learning for object classification: from exploration to exploitation Data Min. Knowl. Disc. 18 2 2009 283 299
-
(2009)
Data Min. Knowl. Disc.
, vol.18
, Issue.2
, pp. 283-299
-
-
Cebron, N.1
Berthold, M.R.2
-
14
-
-
0030221433
-
Neural network exploration using optimal experiment design
-
D.A. Cohn Neural network exploration using optimal experiment design Neural Netw. 9 6 1996 1071 1083
-
(1996)
Neural Netw.
, vol.9
, Issue.6
, pp. 1071-1083
-
-
Cohn, D.A.1
-
15
-
-
56449094571
-
Semi-supervised and active learning with the probabilistic RBF classifier
-
C. Constantinopoulos, and A. Likas Semi-supervised and active learning with the probabilistic RBF classifier Neurocomputing 71 13-15 2008 2489 2498
-
(2008)
Neurocomputing
, vol.71
, Issue.1315
, pp. 2489-2498
-
-
Constantinopoulos, C.1
Likas, A.2
-
16
-
-
9444262543
-
Efficient training algorithms for the probabilistic RBF network
-
G.A. Vouros, T. Panayiotopoulos, Lecture Notes in Computer Science Springer
-
C. Constantinopoulos, and A.C. Likas Efficient training algorithms for the probabilistic RBF network G.A. Vouros, T. Panayiotopoulos, Third Helenic Conference on Artificial Intelligence (SETN '04) Lecture Notes in Computer Science vol. 3025 2004 Springer 183 190
-
(2004)
Third Helenic Conference on Artificial Intelligence (SETN '04)
, vol.3025
, pp. 183-190
-
-
Constantinopoulos, C.1
Likas, A.C.2
-
17
-
-
33746874813
-
An incremental training method for the probabilistic RBF network
-
C. Constantinopoulos, and A.C. Likas An incremental training method for the probabilistic RBF network IEEE Trans. Neural Netw. 17 4 2006 966 974
-
(2006)
IEEE Trans. Neural Netw.
, vol.17
, Issue.4
, pp. 966-974
-
-
Constantinopoulos, C.1
Likas, A.C.2
-
18
-
-
34248648503
-
Unsupervised learning of Gaussian mixtures based on variational component splitting
-
C. Constantinopoulos, and A.C. Likas Unsupervised learning of Gaussian mixtures based on variational component splitting IEEE Trans. Neural Netw. 18 3 2007 745 755
-
(2007)
IEEE Trans. Neural Netw.
, vol.18
, Issue.3
, pp. 745-755
-
-
Constantinopoulos, C.1
Likas, A.C.2
-
19
-
-
62449187253
-
Active learning to maximize area under the ROC curve
-
Hong Kong, hina
-
M. Culver, D. Kun, S. Scott, Active learning to maximize area under the ROC curve, in: Proceedings of the Sixth International Conference on Data Mining (ICDM '06), Hong Kong, China, 2006, pp. 149-158.
-
(2006)
Roceedings of the Sixth International Conference on Data Mining (ICDM '06)
, pp. 149-158
-
-
Culver, M.1
Kun, D.2
Scott, S.3
-
20
-
-
34047236313
-
Utilizing information theoretic diversity for SVM active learning
-
Hong Kong, China
-
C.K. Dagli, S. Rajaram, T.S. Huang, Utilizing information theoretic diversity for SVM active learning, in: Proceedings of the 18th International Conference on Pattern Recognition (ICPR '06), Hong Kong, China, 2006, pp. 506-511.
-
(2006)
Proceedings of the 18th International Conference on Pattern Recognition (ICPR '06)
, pp. 506-511
-
-
Dagli, C.K.1
Rajaram, S.2
Huang, T.S.3
-
21
-
-
0005986550
-
Learning classification with unlabeled data
-
V. de Sa Learning classification with unlabeled data Adv. Neural Inform. Process. Syst. 6 1994 112 119
-
(1994)
Adv. Neural Inform. Process. Syst.
, vol.6
, pp. 112-119
-
-
De Sa, V.1
-
22
-
-
38049181434
-
Dual strategy active learning
-
Warsaw, Poland
-
P. Donmez, J.G. Carbonell, P.N. Bennett, Dual strategy active learning, in: Proceedings of the 18th European Conference on Machine Learning (ECML '07), Warsaw, Poland, 2007, pp. 116-127.
-
(2007)
Proceedings of the 18th European Conference on Machine Learning (ECML '07)
, pp. 116-127
-
-
Donmez, P.1
Carbonell, J.G.2
Bennett, P.N.3
-
24
-
-
84894420816
-
Knowledge fusion for probabilistic generative classifiers with data mining applications
-
D. Fisch, E. Kalkowski, and B. Sick Knowledge fusion for probabilistic generative classifiers with data mining applications IEEE Trans. Knowl. Data Eng. 26 3 2014 652 666
-
(2014)
IEEE Trans. Knowl. Data Eng.
, vol.26
, Issue.3
, pp. 652-666
-
-
Fisch, D.1
Kalkowski, E.2
Sick, B.3
-
25
-
-
79960121631
-
In your interest - Objective interestingness measures for a generative classifier
-
Rome, Italy
-
D. Fisch, E. Kalkowski, B. Sick, S.J. Ovaska, In your interest - objective interestingness measures for a generative classifier, in: Proceedings of the third International Conference on Agents and Artificial Intelligence (ICAART '11), Rome, Italy, 2011, pp. 414-423.
-
(2011)
Proceedings of the Third International Conference on Agents and Artificial Intelligence (ICAART '11)
, pp. 414-423
-
-
Fisch, D.1
Kalkowski, E.2
Sick, B.3
Ovaska, S.J.4
-
26
-
-
70449437193
-
Training of radial basis function classifiers with resilient propagation and variational Bayesian inference
-
Atlanta, GA
-
D. Fisch, B. Sick, Training of radial basis function classifiers with resilient propagation and variational Bayesian inference, in: International Joint Conference on Neural Networks (IJCNN '09), Atlanta, GA, 2009, pp. 838-847.
-
(2009)
International Joint Conference on Neural Networks (IJCNN '09)
, pp. 838-847
-
-
Fisch, D.1
Sick, B.2
-
27
-
-
0032269108
-
How many clusters? Which clustering method? Answers via model-based cluster analysis
-
C. Fraley, and A.E. Raftery How many clusters? Which clustering method? Answers via model-based cluster analysis Comput. J. 41 8 1998 578 588
-
(1998)
Comput. J.
, vol.41
, Issue.8
, pp. 578-588
-
-
Fraley, C.1
Raftery, A.E.2
-
29
-
-
84880855398
-
Optimistic active learning using mutual information
-
Hyderabad, India
-
Y. Guo, R. Greiner, Optimistic active learning using mutual information, in: Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI '07), Hyderabad, India, 2007, pp. 823-829.
-
(2007)
Proceedings of the 20th International Joint Conference on Artificial Intelligence (IJCAI '07)
, pp. 823-829
-
-
Guo, Y.1
Greiner, R.2
-
30
-
-
84858276124
-
Results of the active learning challenge
-
Sardinia, Italy
-
I. Guyon, G. Cawley, G. Dror, V. Lemaire, Results of the active learning challenge, in: JMLR: Workshop and Conference Proceedings 16, Sardinia, Italy, 2011, pp. 19-45.
-
(2011)
JMLR: Workshop and Conference Proceedings 16
, pp. 19-45
-
-
Guyon, I.1
Cawley, G.2
Dror, G.3
Lemaire, V.4
-
31
-
-
0001131390
-
Discriminant analysis by Gaussian mixtures
-
T. Hastie, and R. Tibshirani Discriminant analysis by Gaussian mixtures J. Roy. Stat. Soc. Ser. B 58 1 1996 155 176
-
(1996)
J. Roy. Stat. Soc. Ser. B
, vol.58
, Issue.1
, pp. 155-176
-
-
Hastie, T.1
Tibshirani, R.2
-
32
-
-
34250637963
-
Large-scale text categorization by batch mode active learning
-
Edinburgh, Scotland, UK
-
S.C. Hoi, R. Jin, M.R. Lyu, Large-scale text categorization by batch mode active learning, in: Proceedings of the 15th International World Wide Web conference (WWW '06), Edinburgh, Scotland, UK, 2006, pp. 633-642.
-
(2006)
Proceedings of the 15th International World Wide Web Conference (WWW '06)
, pp. 633-642
-
-
Hoi, S.C.1
Jin, R.2
Lyu, M.R.3
-
33
-
-
79961193287
-
Active learning with SVM
-
J. Ramón, R. Dopico, J. Dorado, A. Pazos (Eds.) IGI Global, Hershey, PA
-
J. Jun, I. Horace, Active learning with SVM, in: J. Ramón, R. Dopico, J. Dorado, A. Pazos (Eds.), Encyclopedia of Artificial Intelligence, vol. 3, IGI Global, Hershey, PA, 2009, pp. 1-7.
-
(2009)
Encyclopedia of Artificial Intelligence
, vol.3
, pp. 1-7
-
-
Jun, J.1
Horace, I.2
-
34
-
-
0037822222
-
Asymptotic behaviors of support vector machines with Gaussian kernel
-
S.S. Keerthi, and C.-J. Lin Asymptotic behaviors of support vector machines with Gaussian kernel Neural Comput. 15 7 2003 1667 1689
-
(2003)
Neural Comput.
, vol.15
, Issue.7
, pp. 1667-1689
-
-
Keerthi, S.S.1
Lin, C.-J.2
-
35
-
-
85013879626
-
A sequential algorithm for training text classifiers
-
Dublin, Ireland
-
D.D. Lewis, W.A. Gale, A sequential algorithm for training text classifiers, in: Proceedings of the Seventeenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '94), Dublin, Ireland, 1994, pp. 3-12.
-
(1994)
Proceedings of the Seventeenth Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR '94)
, pp. 3-12
-
-
Lewis, D.D.1
Gale, W.A.2
-
36
-
-
62949086483
-
A novel semi-supervised SVM based on tri-training
-
Maputo, Mosambique
-
K. Li, W. Zhang, X. Ma, Z. Cao, C. Zhang, A novel semi-supervised SVM based on tri-training, in: Proceedings of the 2008 Second International Symposium on Intelligent Information Technology Application (IITA '08), Maputo, Mosambique, 2008, pp. 47-51.
-
(2008)
Proceedings of the 2008 Second International Symposium on Intelligent Information Technology Application (IITA '08)
, pp. 47-51
-
-
Li, K.1
Zhang, W.2
Ma, X.3
Cao, Z.4
Zhang, C.5
-
37
-
-
0034227415
-
Estimation of elliptical basis function parameters by the em algorithm with application to speaker verification
-
M.-W. Mak, and S.-Y. Kung Estimation of elliptical basis function parameters by the EM algorithm with application to speaker verification IEEE Trans. Neural Netw. 11 4 2000 961 969
-
(2000)
IEEE Trans. Neural Netw.
, vol.11
, Issue.4
, pp. 961-969
-
-
Mak, M.-W.1
Kung, S.-Y.2
-
38
-
-
0004066260
-
-
Wiley Series in Probability and Statistics New York, NY
-
G.J. McLachlan, and D. Peel Finite Mixture Models 2000 Wiley Series in Probability and Statistics New York, NY
-
(2000)
Finite Mixture Models
-
-
McLachlan, G.J.1
Peel, D.2
-
40
-
-
0000672424
-
Fast learning in networks of locally-tuned processing units
-
J. Moody, and C.J. Darken Fast learning in networks of locally-tuned processing units Neural Comput. 1 2 1989 281 294
-
(1989)
Neural Comput.
, vol.1
, Issue.2
, pp. 281-294
-
-
Moody, J.1
Darken, C.J.2
-
41
-
-
84891750688
-
Selective sampling with redundant views
-
Austin, TX
-
I. Muslea, S. Minton, C.A. Knoblock, Selective sampling with redundant views, in: Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence (AAAI '00), Austin, TX, 2000, pp. 621-626.
-
(2000)
Proceedings of the Seventeenth National Conference on Artificial Intelligence and Twelfth Conference on Innovative Applications of Artificial Intelligence (AAAI '00)
, pp. 621-626
-
-
Muslea, I.1
Minton, S.2
Knoblock, C.A.3
-
42
-
-
3242788638
-
Active + semi-supervised learning = robust multi-view learning
-
Sydney, Australia
-
I. Muslea, S. Minton, C.A. Knoblock, Active + semi-supervised learning = robust multi-view learning, in: Proceedings of the Nineteenth International Conference on Machine Learning (ICML '02), Sydney, Australia, 2002, pp. 435-442.
-
(2002)
Proceedings of the Nineteenth International Conference on Machine Learning (ICML '02)
, pp. 435-442
-
-
Muslea, I.1
Minton, S.2
Knoblock, C.A.3
-
43
-
-
14344265134
-
Active learning using pre-clustering
-
Banff, -ABSP
-
H.T. Nguyen, A. Smeulders, Active learning using pre-clustering, in: Proceedings of the Twenty-First International Conference on Machine learning (ICML '04), Banff, AB, 2004, pp. 623-630.
-
(2004)
Proceedings of the Twenty-First International Conference on Machine Learning (ICML '04)
, pp. 623-630
-
-
Nguyen, H.T.1
Smeulders, A.2
-
44
-
-
85136905861
-
Analyzing the effectiveness and applicability of co-training
-
McLean, VA
-
K. Nigam, R. Ghani, Analyzing the effectiveness and applicability of co-training, in: Proceedings of the Ninth International Conference on Information and Knowledge Management (CIKM '00), McLean, VA, 2000, pp. 86-93.
-
(2000)
Proceedings of the Ninth International Conference on Information and Knowledge Management (CIKM '00)
, pp. 86-93
-
-
Nigam, K.1
Ghani, R.2
-
45
-
-
2142727946
-
Limitations of co-training for natural language learning from large datasets
-
Pittsburgh, PA
-
D. Pierce, C. Cardie, Limitations of co-training for natural language learning from large datasets, in: Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing (EMNLP '01), Pittsburgh, PA, 2001, pp. 1-9.
-
(2001)
Proceedings of the 2001 Conference on Empirical Methods in Natural Language Processing (EMNLP '01)
, pp. 1-9
-
-
Pierce, D.1
Cardie, C.2
-
46
-
-
79961204147
-
Active classifier training with the 3DS strategy
-
France, Paris
-
T. Reitmaier, B. Sick, Active classifier training with the 3DS strategy, in: IEEE Symposium on Computational Intelligence and Data Mining (CIDM '11), France, Paris, 2011, pp. 88-95.
-
(2011)
IEEE Symposium on Computational Intelligence and Data Mining (CIDM '11)
, pp. 88-95
-
-
Reitmaier, T.1
Sick, B.2
-
47
-
-
84874112602
-
Let us know your decision: Pool-based active training of a generative classifier with the selection strategy 4DS
-
T. Reitmaier, and B. Sick Let us know your decision: pool-based active training of a generative classifier with the selection strategy 4DS Inform. Sci. 230 2013 106 131
-
(2013)
Inform. Sci.
, vol.230
, pp. 106-131
-
-
Reitmaier, T.1
Sick, B.2
-
49
-
-
38049094034
-
Probability of error of some adaptive pattern recognition machines
-
H.J. Scudder Probability of error of some adaptive pattern recognition machines Proc. IEEE Trans. Inform. Theory 1956 363 371
-
(1956)
Proc. IEEE Trans. Inform. Theory
, pp. 363-371
-
-
Scudder, H.J.1
-
50
-
-
68949137209
-
Active learning literature survey
-
University of Wisconsin, Department of Computer Science
-
B. Settles, Active learning literature survey, Computer Sciences Technical Report 1648, University of Wisconsin, Department of Computer Science, 2009.
-
(2009)
Computer Sciences Technical Report 1648
-
-
Settles, B.1
-
51
-
-
84873124152
-
From theories to queries: Active learning in practice
-
Sardinia, Italy
-
B. Settles, From theories to queries: active learning in practice, in: JMLR: Workshop and Conference Proceedings 16, Sardinia, Italy, 2011, pp. 1-18.
-
(2011)
JMLR: Workshop and Conference Proceedings 16
, pp. 1-18
-
-
Settles, B.1
-
52
-
-
80053375448
-
An analysis of active learning strategies for sequence labeling tasks
-
Honolulu, HI
-
B. Settles, M. Craven, An analysis of active learning strategies for sequence labeling tasks, in: Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP '08), Honolulu, HI, 2008, pp. 1070-1079.
-
(2008)
Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP '08)
, pp. 1070-1079
-
-
Settles, B.1
Craven, M.2
-
53
-
-
0026981853
-
Query by committee
-
Pittsburgh, PA
-
H.S. Seung, M. Opper, H. Sompolinsky, Query by committee, in: Proceedings of the Fifth Annual ACM Conference on Computational Learning Theory (COLT '92), Pittsburgh, PA, 1992, pp. 287-294.
-
(1992)
Proceedings of the Fifth Annual ACM Conference on Computational Learning Theory (COLT '92)
, pp. 287-294
-
-
Seung, H.S.1
Opper, M.2
Sompolinsky, H.3
-
54
-
-
71149105884
-
Uncertainty sampling and transductive experimental design for active dual supervision
-
Montreal, Quebec, CA
-
V. Sindhwan, P. Melville, R.D. Lawrence, Uncertainty sampling and transductive experimental design for active dual supervision, in: Proceedings of the 26th International Conference on Machine Learning (ICML '09), vol. 382, Montreal, Quebec, CA, 2009, pp. 953-960.
-
(2009)
Proceedings of the 26th International Conference on Machine Learning (ICML '09)
, vol.382
, pp. 953-960
-
-
Sindhwan, V.1
Melville, P.2
Lawrence, R.D.3
-
55
-
-
79952312481
-
Margin-based active learning for structured predictions
-
K. Small, and D. Roth Margin-based active learning for structured predictions Int. J. Machine Learn. Cybernet. 1 1-4 2010 413 424
-
(2010)
Int. J. Machine Learn. Cybernet.
, vol.1
, Issue.14
, pp. 413-424
-
-
Small, K.1
Roth, D.2
-
56
-
-
0028497290
-
Maximum likelihood training of probabilistic neural networks.
-
R.L. Streit, and T.E. Luginbuhl Maximum likelihood training of probabilistic neural networks. IEEE Trans. Neural Netw. 5 5 1994 764 783
-
(1994)
IEEE Trans. Neural Netw.
, vol.5
, Issue.5
, pp. 764-783
-
-
Streit, R.L.1
Luginbuhl, T.E.2
-
57
-
-
0033717752
-
A probabilistic RBF network for classification
-
Como, Italy
-
M.K. Titsias, A. Likas, A probabilistic RBF network for classification, in: Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN '00), vol. 4, Como, Italy, 2000, pp. 238-243.
-
(2000)
Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks (IJCNN '00)
, vol.4
, pp. 238-243
-
-
Titsias, M.K.1
Likas, A.2
-
58
-
-
0035440306
-
Shared kernel models for class conditional density estimation
-
M.K. Titsias, and A.C. Likas Shared kernel models for class conditional density estimation IEEE Trans. Neural Netw. 12 5 2001 987 997
-
(2001)
IEEE Trans. Neural Netw.
, vol.12
, Issue.5
, pp. 987-997
-
-
Titsias, M.K.1
Likas, A.C.2
-
59
-
-
0042868698
-
Support vector machine active learning with applications to text classification
-
S. Tong, and D. Koller Support vector machine active learning with applications to text classification J. Machine Learn. Res. 2 2002 45 66
-
(2002)
J. Machine Learn. Res.
, vol.2
, pp. 45-66
-
-
Tong, S.1
Koller, D.2
-
60
-
-
84922594166
-
-
UCL (04/14/2014)
-
UCL, UCL/MLG Elena Database, < http://mlg.info.ucl.ac.be/index.php?page=Elena > (04/14/2014).
-
UCL/MLG Elena Database
-
-
-
61
-
-
84863463582
-
Maximum ambiguity-based sample selection in fuzzy decision tree induction
-
X.-Z. Wang, L.-C. Dong, and J.-H. Yan Maximum ambiguity-based sample selection in fuzzy decision tree induction IEEE Trans. Knowl. Data Eng. 24 8 2012 1491 1505
-
(2012)
IEEE Trans. Knowl. Data Eng.
, vol.24
, Issue.8
, pp. 1491-1505
-
-
Wang, X.-Z.1
Dong, L.-C.2
Yan, J.-H.3
-
62
-
-
16444383160
-
Survey of clustering algorithms
-
R. Xu, and D. Wunsch Survey of clustering algorithms IEEE Trans. Neural Netw. 16 3 2005 645 678
-
(2005)
IEEE Trans. Neural Netw.
, vol.16
, Issue.3
, pp. 645-678
-
-
Xu, R.1
Wunsch, D.2
-
63
-
-
33749265864
-
Active learning via transductive experimental design
-
Pittsburgh, PA
-
K. Yu, J. Bi, V. Tresp, Active learning via transductive experimental design, in: Proceedings of the 23rd International Conference on Machine Learning (ICML '06), Pittsburgh, PA, 2006, pp. 1081-1088.
-
(2006)
Proceedings of the 23rd International Conference on Machine Learning (ICML '06)
, pp. 1081-1088
-
-
Yu, K.1
Bi, J.2
Tresp, V.3
-
64
-
-
16244378563
-
Democratic co-learning
-
Boca Raton, FL
-
Y. Zhou, S. Goldman, Democratic co-learning, in: Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI '04), Boca Raton, FL, 2004, pp. 594-602.
-
(2004)
Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI '04)
, pp. 594-602
-
-
Zhou, Y.1
Goldman, S.2
-
65
-
-
28244448186
-
Tri-training: Exploiting unlabeled data using three classifiers
-
Z.-H. Zhou, and M. Li Tri-training: exploiting unlabeled data using three classifiers IEEE Trans. Knowl. Data Eng. 17 11 2005 1529 1541
-
(2005)
IEEE Trans. Knowl. Data Eng.
, vol.17
, Issue.11
, pp. 1529-1541
-
-
Zhou, Z.-H.1
Li, M.2
|