-
2
-
-
84893108239
-
Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages
-
R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages. In WWW, 2013.
-
(2013)
WWW
-
-
Agrawal, R.1
Gupta, A.2
Prabhu, Y.3
Varma, M.4
-
3
-
-
84867137594
-
The Landmark Selection Method for Multiple Output Prediction
-
K. Balasubramanian and G. Lebanon. The Landmark Selection Method for Multiple Output Prediction. In ICML, 2012.
-
ICML, 2012
-
-
Balasubramanian, K.1
Lebanon, G.2
-
4
-
-
85162326699
-
Fitzgibbon. PiCoDes: Learning a Compact Code for Novel-Category Recognition
-
A. Bergamo, L. Torresani, and A. W. Fitzgibbon. PiCoDes: Learning a Compact Code for Novel-Category Recognition. In NIPS, 2011.
-
(2011)
NIPS
-
-
Bergamo, A.1
Torresani, L.2
W, A.3
-
5
-
-
84907020012
-
Efficient Multi-label Classification with Many Labels
-
W. Bi and J. T.-Y. Kwok. Efficient Multi-label Classification with Many Labels. In ICML, pages 405-413, 2013.
-
(2013)
ICML
, pp. 405-413
-
-
Bi, W.1
Kwok, J.T.-Y.2
-
6
-
-
0007725224
-
Tipping. Variational Relevance Vector Machines
-
C. M. Bishop and M. E. Tipping. Variational Relevance Vector Machines. In UAI, 2000.
-
(2000)
UAI
-
-
Bishop, C.M.1
E, M.2
-
8
-
-
84877784525
-
Feature-aware Label Space Dimension Reduction for Multi-label Classification
-
Y.-N. Chen and H.-T. Lin. Feature-aware Label Space Dimension Reduction for Multi-label Classification. In NIPS, pages 1538-1546, 2012.
-
(2012)
NIPS
, pp. 1538-1546
-
-
Chen, Y.-N.1
Lin, H.-T.2
-
10
-
-
84898977831
-
Robust Bloom Filters for Large MultiLabel Classification Tasks
-
M. Cissé, N. Usunier, T. Artières, and P. Gallinari. Robust Bloom Filters for Large MultiLabel Classification Tasks. In NIPS, pages 1851-1859, 2013.
-
(2013)
NIPS
, pp. 1851-1859
-
-
Cissé, M.1
Usunier, N.2
Artières, T.3
Gallinari, P.4
-
11
-
-
84896062322
-
Active Learning Strategies for Multi-Label Text Classification
-
A. Esuli and F. Sebastiani. Active Learning Strategies for Multi-Label Text Classification. In ECIR, 2009.
-
(2009)
ECIR
-
-
Esuli, A.1
Sebastiani, F.2
-
12
-
-
84868107507
-
Multi-label Classification with Error-Correcting Codes
-
C.-S. Feng and H.-T. Lin. Multi-label Classification with Error-Correcting Codes. JMLR, pages 289-295, 2011.
-
(2011)
JMLR
, pp. 289-295
-
-
Feng, C.-S.1
Lin, H.-T.2
-
13
-
-
84907033363
-
OASIS: Online Active Semi-Supervised Learning
-
A. Goldberg, X. Zhu, A. Furger, and J. Xu. OASIS: Online Active Semi-Supervised Learning. In AAAI, 2011.
-
(2011)
AAAI
-
-
Goldberg, A.1
Zhu, X.2
Furger, A.3
Xu, J.4
-
16
-
-
65449189832
-
Extracting Shared Subspace for Multi-label Classification
-
S. Ji, L. Tang, S. Yu, and J. Ye. Extracting Shared Subspace for Multi-label Classification. In KDD, pages 381-389, 2008.
-
(2008)
KDD
, pp. 381-389
-
-
Ji, S.1
Tang, L.2
Yu, S.3
Ye, J.4
-
17
-
-
84877734258
-
Multilabel Classification using Bayesian Compressed Sensing
-
A. Kapoor, R. Viswanathan, and P. Jain. Multilabel Classification using Bayesian Compressed Sensing. In NIPS, 2012.
-
NIPS
, vol.2012
-
-
Kapoor, A.1
Viswanathan, R.2
Jain, P.3
-
18
-
-
67650691734
-
Near-optimal Nonmyopic Value of Information in Graphical Models
-
A. Krause and C. Guestrin. Near-optimal Nonmyopic Value of Information in Graphical Models. In UAI, 2005.
-
(2005)
UAI
-
-
Krause, A.1
Guestrin, C.2
-
19
-
-
41549146576
-
Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies
-
A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies. JMLR, 2008.
-
(2008)
JMLR
-
-
Krause, A.1
Singh, A.2
Guestrin, C.3
-
20
-
-
84896062998
-
Active Learning with Multi-label SVM Classification
-
X. Li and Y. Guo. Active Learning with Multi-label SVM Classification. In IJCAI, 2013.
-
IJCAI
, vol.2013
-
-
Li, X.1
Guo, Y.2
-
21
-
-
20444497715
-
Multi-label SVM Active Learning for Image Classification
-
X. Li, L. Wang, and E. Sung. Multi-label SVM Active Learning for Image Classification. In ICIP, 2004.
-
(2004)
ICIP
-
-
Li, X.1
Wang, L.2
Sung, E.3
-
23
-
-
0003243224
-
Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
-
MIT Press
-
J. C. Platt. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. In Advances In Large Margin Classifiers. MIT Press, 1999.
-
(1999)
In Advances in Large Margin Classifiers
-
-
Platt, J.C.1
-
24
-
-
68949137209
-
Active learning literature survey
-
B. Settles. Active learning literature survey. Technical report, 2010.
-
(2010)
Technical Report
-
-
Settles, B.1
-
29
-
-
84867117593
-
Wsabie: Scaling Up To Large Vocabulary Image Annotation
-
J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling Up To Large Vocabulary Image Annotation. In IJCAI, 2011.
-
(2011)
IJCAI
-
-
Weston, J.1
Bengio, S.2
Usunier, N.3
-
30
-
-
84897475513
-
Label Partitioning for Sublinear Ranking
-
J. Weston, A. Makadia, and H. Yee. Label Partitioning for Sublinear Ranking. In ICML, 2013.
-
(2013)
ICML
-
-
Weston, J.1
Makadia, A.2
Yee, H.3
-
31
-
-
70350639690
-
Effective multi-label active learning for text classification
-
B. Yang, J. Sun, T. Wang, and Z. Chen. Effective multi-label active learning for text classification. In KDD, 2009.
-
(2009)
KDD
-
-
Yang, B.1
Sun, J.2
Wang, T.3
Chen, Z.4
-
32
-
-
84919793029
-
Large-scale Multi-label Learning with Missing Labels
-
H.-F. Yu, P. Jain, and I. S. Dhillon. Large-scale Multi-label Learning with Missing Labels. ICML, 2014.
-
(2014)
ICML
-
-
Yu, H.-F.1
Jain, P.2
Dhillon, I.S.3
-
33
-
-
84862283912
-
Multi-Label Output Codes using Canonical Correlation Analysis
-
Y. Zhang and J. G. Schneider. Multi-Label Output Codes using Canonical Correlation Analysis. In AISTATS, pages 873-882, 2011.
-
(2011)
AISTATS
, pp. 873-882
-
-
Zhang, Y.1
Schneider, J.G.2
|