메뉴 건너뛰기




Volumn , Issue , 2014, Pages 472-481

Active learning for sparse bayesian multilabel classification

Author keywords

active learning; multi label learning; mutual information

Indexed keywords


EID: 84907033525     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2623330.2623759     Document Type: Conference Paper
Times cited : (76)

References (34)
  • 2
    • 84893108239 scopus 로고    scopus 로고
    • Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages
    • R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. Multi-label learning with millions of labels: Recommending advertiser bid phrases for web pages. In WWW, 2013.
    • (2013) WWW
    • Agrawal, R.1    Gupta, A.2    Prabhu, Y.3    Varma, M.4
  • 3
    • 84867137594 scopus 로고    scopus 로고
    • The Landmark Selection Method for Multiple Output Prediction
    • K. Balasubramanian and G. Lebanon. The Landmark Selection Method for Multiple Output Prediction. In ICML, 2012.
    • ICML, 2012
    • Balasubramanian, K.1    Lebanon, G.2
  • 4
    • 85162326699 scopus 로고    scopus 로고
    • Fitzgibbon. PiCoDes: Learning a Compact Code for Novel-Category Recognition
    • A. Bergamo, L. Torresani, and A. W. Fitzgibbon. PiCoDes: Learning a Compact Code for Novel-Category Recognition. In NIPS, 2011.
    • (2011) NIPS
    • Bergamo, A.1    Torresani, L.2    W, A.3
  • 5
    • 84907020012 scopus 로고    scopus 로고
    • Efficient Multi-label Classification with Many Labels
    • W. Bi and J. T.-Y. Kwok. Efficient Multi-label Classification with Many Labels. In ICML, pages 405-413, 2013.
    • (2013) ICML , pp. 405-413
    • Bi, W.1    Kwok, J.T.-Y.2
  • 6
    • 0007725224 scopus 로고    scopus 로고
    • Tipping. Variational Relevance Vector Machines
    • C. M. Bishop and M. E. Tipping. Variational Relevance Vector Machines. In UAI, 2000.
    • (2000) UAI
    • Bishop, C.M.1    E, M.2
  • 8
    • 84877784525 scopus 로고    scopus 로고
    • Feature-aware Label Space Dimension Reduction for Multi-label Classification
    • Y.-N. Chen and H.-T. Lin. Feature-aware Label Space Dimension Reduction for Multi-label Classification. In NIPS, pages 1538-1546, 2012.
    • (2012) NIPS , pp. 1538-1546
    • Chen, Y.-N.1    Lin, H.-T.2
  • 10
    • 84898977831 scopus 로고    scopus 로고
    • Robust Bloom Filters for Large MultiLabel Classification Tasks
    • M. Cissé, N. Usunier, T. Artières, and P. Gallinari. Robust Bloom Filters for Large MultiLabel Classification Tasks. In NIPS, pages 1851-1859, 2013.
    • (2013) NIPS , pp. 1851-1859
    • Cissé, M.1    Usunier, N.2    Artières, T.3    Gallinari, P.4
  • 11
    • 84896062322 scopus 로고    scopus 로고
    • Active Learning Strategies for Multi-Label Text Classification
    • A. Esuli and F. Sebastiani. Active Learning Strategies for Multi-Label Text Classification. In ECIR, 2009.
    • (2009) ECIR
    • Esuli, A.1    Sebastiani, F.2
  • 12
    • 84868107507 scopus 로고    scopus 로고
    • Multi-label Classification with Error-Correcting Codes
    • C.-S. Feng and H.-T. Lin. Multi-label Classification with Error-Correcting Codes. JMLR, pages 289-295, 2011.
    • (2011) JMLR , pp. 289-295
    • Feng, C.-S.1    Lin, H.-T.2
  • 13
    • 84907033363 scopus 로고    scopus 로고
    • OASIS: Online Active Semi-Supervised Learning
    • A. Goldberg, X. Zhu, A. Furger, and J. Xu. OASIS: Online Active Semi-Supervised Learning. In AAAI, 2011.
    • (2011) AAAI
    • Goldberg, A.1    Zhu, X.2    Furger, A.3    Xu, J.4
  • 15
    • 77956528679 scopus 로고    scopus 로고
    • Multi-Label Prediction via Compressed Sensing
    • D. Hsu, S. Kakade, J. Langford, and T. Zhang. Multi-Label Prediction via Compressed Sensing. In NIPS, 2009.
    • (2009) NIPS
    • Hsu, D.1    Kakade, S.2    Langford, J.3    Zhang, T.4
  • 16
    • 65449189832 scopus 로고    scopus 로고
    • Extracting Shared Subspace for Multi-label Classification
    • S. Ji, L. Tang, S. Yu, and J. Ye. Extracting Shared Subspace for Multi-label Classification. In KDD, pages 381-389, 2008.
    • (2008) KDD , pp. 381-389
    • Ji, S.1    Tang, L.2    Yu, S.3    Ye, J.4
  • 17
    • 84877734258 scopus 로고    scopus 로고
    • Multilabel Classification using Bayesian Compressed Sensing
    • A. Kapoor, R. Viswanathan, and P. Jain. Multilabel Classification using Bayesian Compressed Sensing. In NIPS, 2012.
    • NIPS , vol.2012
    • Kapoor, A.1    Viswanathan, R.2    Jain, P.3
  • 18
    • 67650691734 scopus 로고    scopus 로고
    • Near-optimal Nonmyopic Value of Information in Graphical Models
    • A. Krause and C. Guestrin. Near-optimal Nonmyopic Value of Information in Graphical Models. In UAI, 2005.
    • (2005) UAI
    • Krause, A.1    Guestrin, C.2
  • 19
    • 41549146576 scopus 로고    scopus 로고
    • Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies
    • A. Krause, A. Singh, and C. Guestrin. Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies. JMLR, 2008.
    • (2008) JMLR
    • Krause, A.1    Singh, A.2    Guestrin, C.3
  • 20
    • 84896062998 scopus 로고    scopus 로고
    • Active Learning with Multi-label SVM Classification
    • X. Li and Y. Guo. Active Learning with Multi-label SVM Classification. In IJCAI, 2013.
    • IJCAI , vol.2013
    • Li, X.1    Guo, Y.2
  • 21
    • 20444497715 scopus 로고    scopus 로고
    • Multi-label SVM Active Learning for Image Classification
    • X. Li, L. Wang, and E. Sung. Multi-label SVM Active Learning for Image Classification. In ICIP, 2004.
    • (2004) ICIP
    • Li, X.1    Wang, L.2    Sung, E.3
  • 22
    • 0000095809 scopus 로고
    • An analysis of approximations for maximizing submodular set functions
    • G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of approximations for maximizing submodular set functions. Mathematical Programming, 1978.
    • (1978) Mathematical Programming
    • Nemhauser, G.1    Wolsey, L.2    Fisher, M.3
  • 23
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods
    • MIT Press
    • J. C. Platt. Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. In Advances In Large Margin Classifiers. MIT Press, 1999.
    • (1999) In Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 24
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • B. Settles. Active learning literature survey. Technical report, 2010.
    • (2010) Technical Report
    • Settles, B.1
  • 29
    • 84867117593 scopus 로고    scopus 로고
    • Wsabie: Scaling Up To Large Vocabulary Image Annotation
    • J. Weston, S. Bengio, and N. Usunier. Wsabie: Scaling Up To Large Vocabulary Image Annotation. In IJCAI, 2011.
    • (2011) IJCAI
    • Weston, J.1    Bengio, S.2    Usunier, N.3
  • 30
    • 84897475513 scopus 로고    scopus 로고
    • Label Partitioning for Sublinear Ranking
    • J. Weston, A. Makadia, and H. Yee. Label Partitioning for Sublinear Ranking. In ICML, 2013.
    • (2013) ICML
    • Weston, J.1    Makadia, A.2    Yee, H.3
  • 31
    • 70350639690 scopus 로고    scopus 로고
    • Effective multi-label active learning for text classification
    • B. Yang, J. Sun, T. Wang, and Z. Chen. Effective multi-label active learning for text classification. In KDD, 2009.
    • (2009) KDD
    • Yang, B.1    Sun, J.2    Wang, T.3    Chen, Z.4
  • 32
    • 84919793029 scopus 로고    scopus 로고
    • Large-scale Multi-label Learning with Missing Labels
    • H.-F. Yu, P. Jain, and I. S. Dhillon. Large-scale Multi-label Learning with Missing Labels. ICML, 2014.
    • (2014) ICML
    • Yu, H.-F.1    Jain, P.2    Dhillon, I.S.3
  • 33
    • 84862283912 scopus 로고    scopus 로고
    • Multi-Label Output Codes using Canonical Correlation Analysis
    • Y. Zhang and J. G. Schneider. Multi-Label Output Codes using Canonical Correlation Analysis. In AISTATS, pages 873-882, 2011.
    • (2011) AISTATS , pp. 873-882
    • Zhang, Y.1    Schneider, J.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.