메뉴 건너뛰기




Volumn 19, Issue 1, 2010, Pages 254-263

Laplacian regularized D-Optimal Design for Active Learning and its application to image retrieval

Author keywords

Active learning; Experimental design; Image retrieval; Regularization

Indexed keywords

ACTIVE LEARNING; ACTIVE-LEARNING ALGORITHM; AMOUNT OF INFORMATION; CONVENTIONAL ALGORITHMS; D-OPTIMAL DESIGNS; DATA POINTS; DATA SIZE; DATA SPACE; EXPERIMENTAL DESIGN; GEOMETRICAL STRUCTURE; GRAPH LAPLACIAN; LAPLACIANS; LEAST SQUARE ERRORS; NEAREST NEIGHBORS; OPTIMAL EXPERIMENTAL DESIGNS; REGRESSION MODEL; TRAINING SAMPLE; UNLABELED SAMPLES;

EID: 72949097899     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2009.2032342     Document Type: Article
Times cited : (111)

References (38)
  • 3
    • 0034792634 scopus 로고    scopus 로고
    • Support vector machine active learning for image retrieval
    • S. Tong and E. Chang, "Support vector machine active learning for image retrieval," in Proc. 9th ACM Int. Conf. Multimedia, 2001, pp. 107-118.
    • (2001) Proc. 9th ACM Int. Conf. Multimedia , pp. 107-118
    • Tong, S.1    Chang, E.2
  • 4
    • 13444259417 scopus 로고    scopus 로고
    • Multimodal concept-dependent active learning for image retrieval
    • presented at the, New York, Oct.
    • K.-S. Goh, E. Y. Chang, and W.-C. Lai, "Multimodal concept-dependent active learning for image retrieval," presented at the ACM Conf. Multimedia, New York, Oct. 2004.
    • (2004) ACM Conf. Multimedia
    • Goh, K.-S.1    Chang, E.Y.2    Lai, W.-C.3
  • 5
    • 0007696417 scopus 로고    scopus 로고
    • Less is more: Active learning with support vector machines
    • presented at the, Stanford, CA
    • G. Schohn and D. Cohn, "Less is more: Active learning with support vector machines," presented at the 17th Int. Conf. Machine Learning, Stanford, CA, 2000.
    • (2000) 17th Int. Conf. Machine Learning
    • Schohn, G.1    Cohn, D.2
  • 6
    • 33749252873 scopus 로고    scopus 로고
    • O. Chapelle, B. Schölkopf, and A. Zien, Eds. Cambridge, MA: MIT Press
    • O. Chapelle, B. Schölkopf, and A. Zien, Eds., Semi-Supervised Learning. Cambridge, MA: MIT Press, 2006.
    • (2006) Semi-Supervised Learning
  • 7
    • 31844440904 scopus 로고    scopus 로고
    • Beyond the point cloud: From transductive to semi-supervised learning
    • presented at the
    • V. Sindhwani, P. Niyogi, and M. Belkin, "Beyond the point cloud: From transductive to semi-supervised learning," presented at the Int. Conf. Machine Learning, 2005.
    • (2005) Int. Conf. Machine Learning
    • Sindhwani, V.1    Niyogi, P.2    Belkin, M.3
  • 8
    • 49049111209 scopus 로고    scopus 로고
    • Semi-supervised discriminant analysis
    • presented at the, Rio de Janeriro, Brazil
    • D. Cai, X. He, and J. Han, "Semi-supervised discriminant analysis," presented at the IEEE Int. Conf. Computer Vision, Rio de Janeriro, Brazil, 2007.
    • (2007) IEEE Int. Conf. Computer Vision
    • Cai, D.1    He, X.2    Han, J.3
  • 9
    • 37549070399 scopus 로고    scopus 로고
    • Learning a maximum margin subspace for image retrieval
    • Feb.
    • X. He, D. Cai, and J. Han, "Learning a maximum margin subspace for image retrieval," IEEE Trans. Knowl. Data Eng., vol.20, no.2, Feb. 2008.
    • (2008) IEEE Trans. Knowl. Data Eng. , vol.20 , Issue.2
    • He, X.1    Cai, D.2    Han, J.3
  • 11
    • 0031620208 scopus 로고    scopus 로고
    • Combining labeled and unlabeled data with co-training
    • presented at the, Madison, WI
    • A. Blum and T. Mitchell, "Combining labeled and unlabeled data with co-training," presented at the 11th Annu. Conf. Computational Learning Theory, Madison, WI, 1998.
    • (1998) 11th Annu. Conf. Computational Learning Theory
    • Blum, A.1    Mitchell, T.2
  • 12
    • 1942483137 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Bled, Slovenia
    • T. Joachims, "Transductive inference for text classification using support vector machines," presented at the 16th Int. Conf. Machine Learning, Bled, Slovenia, 1999.
    • (1999) 16th Int. Conf. Machine Learning
    • Joachims, T.1
  • 15
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: A geometric framework for learning from examples
    • M. Belkin, P. Niyogi, and V. Sindhwani, "Manifold regularization: A geometric framework for learning from examples," J. Mach. Learn. Res., vol.7, pp. 2399-2434, 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 18
    • 33644650424 scopus 로고    scopus 로고
    • A unified log-based relevance feedback scheme for image retrieval
    • Apr.
    • S. C. Hoi, M. R. Lyu, and R. Jin, "A unified log-based relevance feedback scheme for image retrieval," IEEE Trans. Knowl. Data Eng., vol.18, no.4, pp. 509-524, Apr. 2006.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.4 , pp. 509-524
    • Hoi, S.C.1    Lyu, M.R.2    Jin, R.3
  • 19
    • 84883066921 scopus 로고    scopus 로고
    • Semantic manifold learning for image retrieval
    • presented at the, Singapore, Nov.
    • Y.-Y. Lin, T.-L. Liu, and H.-T. Chen, "Semantic manifold learning for image retrieval," presented at the ACM Conf. Multimedia, Singapore, Nov. 2005.
    • (2005) ACM Conf. Multimedia
    • Lin, Y.-Y.1    Liu, T.-L.2    Chen, H.-T.3
  • 20
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • Jul.
    • D. Tao, X. Tang, X. Li, and X. Wu, "Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval," IEEE Trans. Pattern Anal. Mach. Intell., vol.28, no.7, pp. 1088-1099, Jul. 2006.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.7 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 21
    • 33746586210 scopus 로고    scopus 로고
    • Kernel direct biased discriminant analysis: A new content-based image retrieval relevance feedback algorithm
    • Apr.
    • D. Tao, X. Tang, X. Li, and Y. Rui, "Kernel direct biased discriminant analysis: A new content-based image retrieval relevance feedback algorithm," IEEE Trans. Multimedia, vol.8, no.4, pp. 716-727, Apr. 2006.
    • (2006) IEEE Trans. Multimedia , vol.8 , Issue.4 , pp. 716-727
    • Tao, D.1    Tang, X.2    Li, X.3    Rui, Y.4
  • 22
    • 36148991603 scopus 로고    scopus 로고
    • Negative samples analysis in relevance feedback
    • Apr.
    • D. Tao, X. Li, and S. Maybank, "Negative samples analysis in relevance feedback," IEEE Trans. Knowl. Data Eng., vol.19, no.4, pp. 568-580, Apr. 2007.
    • (2007) IEEE Trans. Knowl. Data Eng. , vol.19 , Issue.4 , pp. 568-580
    • Tao, D.1    Li, X.2    Maybank, S.3
  • 24
    • 37849040752 scopus 로고    scopus 로고
    • Spectral regression: A unified subspace learning framework for content-based image retrieval
    • presented at the
    • D. Cai, X. He, and J. Han, "Spectral regression: A unified subspace learning framework for content-based image retrieval," presented at the 15th ACM Int. Conf. Multimedia, 2007.
    • (2007) 15th ACM Int. Conf. Multimedia
    • Cai, D.1    He, X.2    Han, J.3
  • 27
    • 33749265864 scopus 로고    scopus 로고
    • Active learning via transductive experimental design
    • presented at the, Pittsburgh, PA
    • K. Yu, J. Bi, and V. Tresp, "Active learning via transductive experimental design," presented at the 23rd Int. Conf. Machine Learning, Pittsburgh, PA, 2006.
    • (2006) 23rd Int. Conf. Machine Learning
    • Yu, K.1    Bi, J.2    Tresp, V.3
  • 28
    • 72949095187 scopus 로고    scopus 로고
    • ser. Regional Conference Series in Mathematics. Providence, RI: AMS
    • F. R. K. Chung, Spectral Graph Theory, ser. Regional Conference Series in Mathematics. Providence, RI: AMS, 1997, vol.92.
    • (1997) Spectral Graph Theory , vol.92
    • Chung, F.R.K.1
  • 30
    • 0000905617 scopus 로고
    • Adjustment of an inverse matrix corresponding to a change in one element of a given matrix
    • J. Sherman and W. J. Morrison, "Adjustment of an inverse matrix corresponding to a change in one element of a given matrix," Ann. Math. Statist., vol.21, pp. 124-127, 1950.
    • (1950) Ann. Math. Statist. , vol.21 , pp. 124-127
    • Sherman, J.1    Morrison, W.J.2
  • 37
    • 14544275126 scopus 로고    scopus 로고
    • How to complete performance graphs in content-based image retrieval: Add generality and normalize scope
    • Feb.
    • D. P. Huijsmans and N. Sebe, "How to complete performance graphs in content-based image retrieval: Add generality and normalize scope," IEEE Trans. Pattern Anal. Mach. Intell., vol.27, no.2, pp. 245-251, Feb. 2005.
    • (2005) IEEE Trans. Pattern Anal. Mach. Intell. , vol.27 , Issue.2 , pp. 245-251
    • Huijsmans, D.P.1    Sebe, N.2
  • 38
    • 70450178445 scopus 로고    scopus 로고
    • A unified active and semi-supervised learning framework for image compression
    • presented at the, Miami, FL
    • X. He, M. Ji, and H. Bao, "A unified active and semi-supervised learning framework for image compression," presented at the IEEE Int. Conf. Computer Vision and Pattern Recognition, Miami, FL, 2009.
    • (2009) IEEE Int. Conf. Computer Vision and Pattern Recognition
    • He, X.1    Ji, M.2    Bao, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.