메뉴 건너뛰기




Volumn 8, Issue 4, 2012, Pages

Uncertainty-based active learning with instability estimation for text classification

Author keywords

Active learning; Data annotation; Instability estimation; Text classification; Uncertainty sampling

Indexed keywords

ACTIVE LEARNING; DATA ANNOTATION; DATA SETS; DECISION BOUNDARY; DENSITY METHODS; DIRECTLY MODEL; ENTROPY-BASED; LEARNING PROCESS; POOL-BASED; POSTERIOR PROBABILITY; RANDOM SAMPLING; SAMPLING METHOD; SELECTED EXAMPLES; SELECTIVE SAMPLING; SIGMOIDAL FUNCTIONS; TEXT CLASSIFICATION;

EID: 84863267844     PISSN: 15504875     EISSN: 15504883     Source Type: Journal    
DOI: 10.1145/2093153.2093154     Document Type: Article
Times cited : (26)

References (48)
  • 1
    • 21844444960 scopus 로고    scopus 로고
    • Online choice of active learning algorithms
    • YORAM, B., EL-YANIV, R., AND LUZ, K. 2004. Online choice of active learning algorithms. J. Mach. Learn. Res., 5, 255-291.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 255-291
    • Yoram, B.1    El-Yaniv, R.2    Luz, K.3
  • 2
    • 84863260212 scopus 로고    scopus 로고
    • How well does active learning actually work? Time-Based evaluation of cost-reduction strategies for language documentation
    • BALDRIDGE, J. AND PALMER, A. 2009. How well does active learning actually work? Time-Based evaluation of cost-reduction strategies for language documentation. In Proceedings of the ACL'09 Conference.
    • (2009) Proceedings of the ACL'09 Conference
    • Baldridge, J.1    Palmer, A.2
  • 3
    • 84880710859 scopus 로고    scopus 로고
    • A two-stage method for active learning of statistical grammars
    • BECKER, M. AND OSBORNE, M. 2005. A two-stage method for active learning of statistical grammars. In Proceedings of the IJCAI'05 Conference. 991-996
    • (2005) Proceedings of the IJCAI'05 Conference , pp. 991-996
    • Becker, M.1    Osborne, M.2
  • 9
    • 0028424239 scopus 로고
    • Improving generalization with active learning
    • COHN, D., ATLAS, L., AND LADNER, R. 1994. Improving generalization with active learning. Mach. Learn. 15, 2, 201-221.
    • (1994) Mach. Learn. , vol.15 , Issue.2 , pp. 201-221
    • Cohn, D.1    Atlas, L.2    Ladner, R.3
  • 11
    • 29344432464 scopus 로고    scopus 로고
    • Reducing labeling effort for structured prediction tasks
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • CULOTTA, A. AND MCCALLUM, A. 2005. Reducing labeling effort for structured prediction tasks. In Proceedings of AAAI'05 Conference. 746-751 (Pubitemid 43006698)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 746-751
    • Culotta, A.1    McCallum, A.2
  • 14
    • 84859917581 scopus 로고    scopus 로고
    • Active learning for multilingual statistical machine translation
    • HAFFARI, G. AND SARKAR, A. 2009. Active learning for multilingual statistical machine translation. In Proceedings of the ACL'09 Conference. 181-189.
    • (2009) Proceedings of the ACL'09 Conference , pp. 181-189
    • Haffari, G.1    Sarkar, A.2
  • 27
    • 0003243224 scopus 로고    scopus 로고
    • Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
    • MIT Press
    • PLATT, J. C. 1999. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In Advances in Large Margin Classifiers. MIT Press.
    • (1999) Advances in Large Margin Classifiers
    • Platt, J.C.1
  • 32
    • 34548168342 scopus 로고    scopus 로고
    • Active learning for logistic regression: An evaluation
    • DOI 10.1007/s10994-007-5019-5
    • SCHEIN, A. I. AND UNGAR, L. H. 2007. Active learning for logistic regression: An evaluation. Mach. Learn. 68, 3, 235-265. (Pubitemid 47312489)
    • (2007) Machine Learning , vol.68 , Issue.3 , pp. 235-265
    • Schein, A.I.1    Ungar, L.H.2
  • 33
    • 68949137209 scopus 로고    scopus 로고
    • Active learning literature survey
    • Tech. rep. 1648, University of Wisconsin-Madison
    • SETTLES, B. 2009. Active learning literature survey. Computer Science Tech. rep. 1648, University of Wisconsin-Madison.
    • (2009) Computer Science
    • Settles, B.1
  • 40
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • TONG S. AND KOLLER, D. 2001. Support vector machine active learning with applications to text classification. J. Mach. Learn. Res. 45-66.
    • (2001) J. Mach. Learn. Res. , pp. 45-66
    • Tong, S.1    Koller, D.2
  • 41
    • 40149096977 scopus 로고    scopus 로고
    • A stopping criterion for active learning
    • DOI 10.1016/j.csl.2007.12.001, PII S088523080700068X
    • VLACHOS, A. 2008. A stopping criterion for active learning. Comput. Speech Lang. 22, 3, 295-312. (Pubitemid 351329454)
    • (2008) Computer Speech and Language , vol.22 , Issue.3 , pp. 295-312
    • Vlachos, A.1
  • 43
    • 77950063604 scopus 로고    scopus 로고
    • Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion
    • YU, D.,VARADARAJAN, B.,DENG, L., AND ACERO, A. 2010. Active learning and semi-supervised learning for speech recognition: A unified framework using the global entropy reduction maximization criterion. Comput. Speech Lang., 24, 3, 433-444.
    • (2010) Comput. Speech Lang. , vol.24 , Issue.3 , pp. 433-444
    • Yu, D.1    Varadarajan, B.2    Deng, L.3    Acero, A.4
  • 47
    • 77953755634 scopus 로고    scopus 로고
    • Confidence-Based stopping criteria for active learning for data annotation
    • ZHU, J.,WANG, H.,HOVY, E., AND MA, M. 2010. Confidence-Based stopping criteria for active learning for data annotation. ACM Trans. Speech Lang. Process. 6, 3, 1-24.
    • (2010) ACM Trans. Speech Lang. Process. , vol.3-6 , pp. 1-24
    • Zhu, J.1    Wang, H.2    Hovy, E.3    Ma, M.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.