메뉴 건너뛰기




Volumn 43, Issue 1, 2013, Pages 332-346

OligoIS: Scalable instance selection for class-imbalanced data sets

Author keywords

Class imbalance problem; Instance selection; Instance based learning; Very large problems

Indexed keywords

AMOUNT OF INFORMATION; CLASS-IMBALANCE PROBLEM; DIVIDE-AND-CONQUER PRINCIPLE; INSTANCE BASED LEARNING; INSTANCE SELECTION; LARGE PROBLEMS; PARALLEL ENVIRONMENT; VERY LARGE DATUM;

EID: 84885429252     PISSN: 21682267     EISSN: None     Source Type: Journal    
DOI: 10.1109/TSMCB.2012.2206381     Document Type: Article
Times cited : (49)

References (32)
  • 1
    • 68549133155 scopus 로고    scopus 로고
    • Learning from imbalanced data
    • Sep.
    • H. He and E. A. Garcia, "Learning from imbalanced data," IEEE Trans. Knowl. Data Eng., vol. 21, no. 9, pp. 1263-1284, Sep. 2009.
    • (2009) IEEE Trans. Knowl. Data Eng. , vol.21 , Issue.9 , pp. 1263-1284
    • He, H.1    Garcia, E.A.2
  • 2
    • 0346586663 scopus 로고    scopus 로고
    • SMOTE: Synthetic minority over-sampling technique
    • Jan.
    • N. V. Chawla, W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, "SMOTE: Synthetic minority over-sampling technique," J. Artif. Intell. Res., vol. 16, no. 1, pp. 321-357, Jan. 2002.
    • (2002) J. Artif. Intell. Res. , vol.16 , Issue.1 , pp. 321-357
    • Chawla, N.V.1    Bowyer, W.2    Hall, L.O.3    Kegelmeyer, W.P.4
  • 5
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • Feb.
    • A. Estabrooks, T. Jo, and N. Japkowicz, "A multiple resampling method for learning from imbalanced data sets," Comput. Intell., vol. 20, no. 1, pp. 18-36, Feb. 2004.
    • (2004) Comput. Intell. , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 6
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: One-sided selection
    • M. Kubat and S. Matwin, "Addressing the curse of imbalanced training sets: One-sided selection," in Proc. 14th Int. Conf. Mach. Learn., 1997, pp. 179-186.
    • Proc. 14th Int. Conf. Mach. Learn., 1997 , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 7
    • 80052414830 scopus 로고    scopus 로고
    • Evolutionary-based selection of generalized instances for imbalanced classification
    • Feb.
    • S. García, J. Derrac, I. Triguero, C. J. Carmona, and F. Herrera, "Evolutionary-based selection of generalized instances for imbalanced classification," Knowl.-Based Syst., vol. 25, no. 1, pp. 3-12, Feb. 2012.
    • (2012) Knowl.-Based Syst. , vol.25 , Issue.1 , pp. 3-12
    • García, S.1    Derrac, J.2    Triguero, I.3    Carmona, C.J.4    Herrera, F.5
  • 8
    • 76549132784 scopus 로고    scopus 로고
    • A cooperative coevolutionary algorithm for instance selection for instance-based learning
    • Mar.
    • N. García-Pedrajas, J. A. Romero del Castillo, and D. Ortiz-Boyer, "A cooperative coevolutionary algorithm for instance selection for instance-based learning," Mach. Learn., vol. 78, no. 3, pp. 381-420, Mar. 2010.
    • (2010) Mach. Learn. , vol.78 , Issue.3 , pp. 381-420
    • García-Pedrajas, N.1    Romero Del Castillo, J.A.2    Ortiz-Boyer, D.3
  • 9
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
    • Fall
    • S. García and F. Herrera, "Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy," Evol. Comput., vol. 17, no. 3, pp. 275-306, Fall 2009.
    • (2009) Evol. Comput. , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 10
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • May
    • L. Kuncheva and C. J. Whitaker, "Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy," Mach. Learn., vol. 51, no. 2, pp. 181-207, May 2003.
    • (2003) Mach. Learn. , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.1    Whitaker, C.J.2
  • 11
  • 12
    • 0036522693 scopus 로고    scopus 로고
    • Strategies for learning in class imbalance problems
    • Mar.
    • R. Barandela, J. L. Sánchez, V. García, and E. Rangel, "Strategies for learning in class imbalance problems," Pattern Recognit., vol. 36, no. 3, pp. 849-851, Mar. 2003.
    • (2003) Pattern Recognit. , vol.36 , Issue.3 , pp. 849-851
    • Barandela, R.1    Sánchez, J.L.2    García, V.3    Rangel, E.4
  • 13
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Mar.
    • I. Guyon and A. Elisseeff, "An introduction to variable and feature selection," J. Mach. Learn. Res., vol. 3, pp. 1157-1182, Mar. 2003.
    • (2003) J. Mach. Learn. Res. , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 15
    • 60849105643 scopus 로고    scopus 로고
    • Constructing ensembles of classifiers by means of weighted instance selection
    • Feb.
    • N. García-Pedrajas, "Constructing ensembles of classifiers by means of weighted instance selection," IEEE Trans. Neural Netw., vol. 20, no. 2, pp. 258-277, Feb. 2009.
    • (2009) IEEE Trans. Neural Netw. , vol.20 , Issue.2 , pp. 258-277
    • García-Pedrajas, N.1
  • 16
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Mar.
    • D. R. Wilson and T. R. Martinez, "Reduction techniques for instance-based learning algorithms," Mach. Learn., vol. 38, no. 3, pp. 257-286, Mar. 2000.
    • (2000) Mach. Learn. , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 17
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Jul.
    • D. L. Wilson, "Asymptotic properties of nearest neighbor rules using edited data," IEEE Trans. Syst., Man, Cybern., vol. SMC-2, no. 3, pp. 408-421, Jul. 1972.
    • (1972) IEEE Trans. Syst., Man, Cybern. , vol.SMC-2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 18
    • 0036104537 scopus 로고    scopus 로고
    • Advances in instance selection for instance-based learning algorithms
    • Apr.
    • H. Brighton and C. Mellish, "Advances in instance selection for instance-based learning algorithms," Data Mining Knowl. Discov., vol. 6, no. 2, pp. 153-172, Apr. 2002.
    • (2002) Data Mining Knowl. Discov. , vol.6 , Issue.2 , pp. 153-172
    • Brighton, H.1    Mellish, C.2
  • 19
    • 0000935031 scopus 로고
    • Editing for the k-nearest neighbors rule by a genetic algorithm
    • Aug.
    • L. Kuncheva, "Editing for the k-nearest neighbors rule by a genetic algorithm," Pattern Recognit. Lett., vol. 16, no. 8, pp. 809-814, Aug. 1995.
    • (1995) Pattern Recognit. Lett. , vol.16 , Issue.8 , pp. 809-814
    • Kuncheva, L.1
  • 20
    • 60849116742 scopus 로고    scopus 로고
    • Pattern and feature selection by genetic algorithms in nearest neighbor classification
    • H. Ishibuchi and T. Nakashima, "Pattern and feature selection by genetic algorithms in nearest neighbor classification," J. Adv. Comput. Intell. Intell. Inf., vol. 4, no. 2, pp. 138-145, 2000.
    • (2000) J. Adv. Comput. Intell. Intell. Inf. , vol.4 , Issue.2 , pp. 138-145
    • Ishibuchi, H.1    Nakashima, T.2
  • 21
    • 0346238443 scopus 로고    scopus 로고
    • Using genetic algorithms for training data selection in RBF networks
    • H. Liu and H. Motoda, Eds. Norwell, MA: Kluwer
    • C. R. Reeves and D. R. Bush, "Using genetic algorithms for training data selection in RBF networks," in Instances Selection and Construction for Data Mining, H. Liu and H. Motoda, Eds. Norwell, MA: Kluwer, 2001, pp. 339-356.
    • (2001) Instances Selection and Construction for Data Mining , pp. 339-356
    • Reeves, C.R.1    Bush, D.R.2
  • 22
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • Dec.
    • J. R. Cano, F. Herrera, and M. Lozano, "Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study," IEEE Trans. Evol. Comput., vol. 7, no. 6, pp. 561-575, Dec. 2003.
    • (2003) IEEE Trans. Evol. Comput. , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 23
    • 68849109676 scopus 로고    scopus 로고
    • Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
    • Sep.
    • S. García, A. Fernández, and F. Herrera, "Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems," Appl. Soft Comput., vol. 9, no. 4, pp. 1304-1314, Sep. 2009.
    • (2009) Appl. Soft Comput. , vol.9 , Issue.4 , pp. 1304-1314
    • García, S.1    Fernández, A.2    Herrera, F.3
  • 24
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • May
    • P. E. Hart, "The condensed nearest neighbor rule," IEEE Trans. Inf. Theory, vol. IT-14, no. 3, pp. 515-516, May 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.3 , pp. 515-516
    • Hart, P.E.1
  • 25
    • 0017024036 scopus 로고
    • Two modifications of CNN
    • Nov.
    • I. Tomek, "Two modifications of CNN," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. SMCB-6, no. 11, pp. 769-772, Nov. 1976.
    • (1976) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.SMCB-6 , Issue.11 , pp. 769-772
    • Tomek, I.1
  • 26
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • Jun.
    • G. E. A. P. A. Batista, R. C. Prati, and M. C. Monard, "A study of the behavior of several methods for balancing machine learning training data," SIGKDD Explor. Newslett., vol. 6, no. 1, pp. 20-29, Jun. 2004.
    • (2004) SIGKDD Explor. Newslett. , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 27
    • 25444531678 scopus 로고    scopus 로고
    • Decision boundary preserving prototype selection for nearest neighbor classification
    • Sep.
    • R. Barandela, F. J. Ferri, and J. S. Sánchez, "Decision boundary preserving prototype selection for nearest neighbor classification," Int. J. Pattern Recognit. Artif. Intell., vol. 19, no. 6, pp. 787-806, Sep. 2005.
    • (2005) Int. J. Pattern Recognit. Artif. Intell. , vol.19 , Issue.6 , pp. 787-806
    • Barandela, R.1    Ferri, F.J.2    Sánchez, J.S.3
  • 28
    • 0016569790 scopus 로고
    • An algorithm for selective nearest neighbor decision rule
    • Nov.
    • G. L. Ritter, H. B. Woodruff, S. R. Lowry, and T. L. Isenhour, "An algorithm for selective nearest neighbor decision rule," IEEE Trans. Inf. Theory, vol. IT-21, no. 6, pp. 665-669, Nov. 1975.
    • (1975) IEEE Trans. Inf. Theory , vol.IT-21 , Issue.6 , pp. 665-669
    • Ritter, G.L.1    Woodruff, H.B.2    Lowry, S.R.3    Isenhour, T.L.4
  • 29
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Dec.
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets," J. Mach. Learn. Res., vol. 7, pp. 1-30, Dec. 2006.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 30
    • 70349334855 scopus 로고    scopus 로고
    • Disturbing neighbors diversity for decision forest
    • G. Valentini and O. Okun, Eds., Patras, Grecia, Jul.
    • J. Maudes-Raedo, J. J. Rodríguez-Díez, and C. García-Osorio, "Disturbing neighbors diversity for decision forest," in Proc. Workshop SUEMA, G. Valentini and O. Okun, Eds., Patras, Grecia, Jul. 2008, pp. 67-71.
    • (2008) Proc. Workshop SUEMA , pp. 67-71
    • Maudes-Raedo, J.1    Rodríguez-Díez, J.J.2    García-Osorio, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.